Spaces:
Build error
Build error
| # ComfyUI's ControlNet Auxiliary Preprocessors | |
|  | |
| Plug-and-play [ComfyUI](https://github.com/comfyanonymous/ComfyUI) node sets for making [ControlNet](https://github.com/lllyasviel/ControlNet/) hint images | |
| The code is copy-pasted from the respective folders in https://github.com/lllyasviel/ControlNet/tree/main/annotator and connected to [the 🤗 Hub](https://huggingface.co/lllyasviel/Annotators). | |
| All credit & copyright goes to https://github.com/lllyasviel. | |
| # Marigold | |
| Check out Marigold Depth Estimator which can generate very detailed and sharp depth map from high-resolution still images. The mesh created by it is even 3D-printable. Due to diffusers, it can't be implemented in this extension but there is an Comfy implementation by Kijai | |
| https://github.com/kijai/ComfyUI-Marigold | |
|  | |
|  | |
| # Updates | |
| Go to [Update page](./UPDATES.md) to follow updates | |
| # Installation: | |
| ## Using ComfyUI Manager (recommended): | |
| Install [ComfyUI Manager](https://github.com/ltdrdata/ComfyUI-Manager) and do steps introduced there to install this repo. | |
| ## Alternative: | |
| If you're running on Linux, or non-admin account on windows you'll want to ensure `/ComfyUI/custom_nodes` and `comfyui_controlnet_aux` has write permissions. | |
| There is now a **install.bat** you can run to install to portable if detected. Otherwise it will default to system and assume you followed ConfyUI's manual installation steps. | |
| If you can't run **install.bat** (e.g. you are a Linux user). Open the CMD/Shell and do the following: | |
| - Navigate to your `/ComfyUI/custom_nodes/` folder | |
| - Run `git clone https://github.com/Fannovel16/comfyui_controlnet_aux/` | |
| - Navigate to your `comfyui_controlnet_aux` folder | |
| - Portable/venv: | |
| - Run `path/to/ComfUI/python_embeded/python.exe -s -m pip install -r requirements.txt` | |
| - With system python | |
| - Run `pip install -r requirements.txt` | |
| - Start ComfyUI | |
| # Nodes | |
| Please note that this repo only supports preprocessors making hint images (e.g. stickman, canny edge, etc). | |
| All preprocessors except Inpaint are intergrated into `AIO Aux Preprocessor` node. | |
| This node allow you to quickly get the preprocessor but a preprocessor's own threshold parameters won't be able to set. | |
| You need to use its node directly to set thresholds. | |
| # Nodes (sections are categories in Comfy menu) | |
| ## Line Extractors | |
| | Preprocessor Node | sd-webui-controlnet/other | ControlNet/T2I-Adapter | | |
| |-----------------------------|---------------------------|-------------------------------------------| | |
| | Binary Lines | binary | control_scribble | | |
| | Canny Edge | canny | control_v11p_sd15_canny <br> control_canny <br> t2iadapter_canny | | |
| | HED Soft-Edge Lines | hed | control_v11p_sd15_softedge <br> control_hed | | |
| | Standard Lineart | standard_lineart | control_v11p_sd15_lineart | | |
| | Realistic Lineart | lineart (or `lineart_coarse` if `coarse` is enabled) | control_v11p_sd15_lineart | | |
| | Anime Lineart | lineart_anime | control_v11p_sd15s2_lineart_anime | | |
| | Manga Lineart | lineart_anime_denoise | control_v11p_sd15s2_lineart_anime | | |
| | M-LSD Lines | mlsd | control_v11p_sd15_mlsd <br> control_mlsd | | |
| | PiDiNet Soft-Edge Lines | pidinet | control_v11p_sd15_softedge <br> control_scribble | | |
| | Scribble Lines | scribble | control_v11p_sd15_scribble <br> control_scribble | | |
| | Scribble XDoG Lines | scribble_xdog | control_v11p_sd15_scribble <br> control_scribble | | |
| | Fake Scribble Lines | scribble_hed | control_v11p_sd15_scribble <br> control_scribble | | |
| | TEED Soft-Edge Lines | teed | [controlnet-sd-xl-1.0-softedge-dexined](https://huggingface.co/SargeZT/controlnet-sd-xl-1.0-softedge-dexined/blob/main/controlnet-sd-xl-1.0-softedge-dexined.safetensors) <br> control_v11p_sd15_softedge (Theoretically) | |
| | Scribble PiDiNet Lines | scribble_pidinet | control_v11p_sd15_scribble <br> control_scribble | | |
| | AnyLine Lineart | | mistoLine_fp16.safetensors <br> mistoLine_rank256 <br> control_v11p_sd15s2_lineart_anime <br> control_v11p_sd15_lineart | | |
| ## Normal and Depth Estimators | |
| | Preprocessor Node | sd-webui-controlnet/other | ControlNet/T2I-Adapter | | |
| |-----------------------------|---------------------------|-------------------------------------------| | |
| | MiDaS Depth Map | (normal) depth | control_v11f1p_sd15_depth <br> control_depth <br> t2iadapter_depth | | |
| | LeReS Depth Map | depth_leres | control_v11f1p_sd15_depth <br> control_depth <br> t2iadapter_depth | | |
| | Zoe Depth Map | depth_zoe | control_v11f1p_sd15_depth <br> control_depth <br> t2iadapter_depth | | |
| | MiDaS Normal Map | normal_map | control_normal | | |
| | BAE Normal Map | normal_bae | control_v11p_sd15_normalbae | | |
| | MeshGraphormer Hand Refiner ([HandRefinder](https://github.com/wenquanlu/HandRefiner)) | depth_hand_refiner | [control_sd15_inpaint_depth_hand_fp16](https://huggingface.co/hr16/ControlNet-HandRefiner-pruned/blob/main/control_sd15_inpaint_depth_hand_fp16.safetensors) | | |
| | Depth Anything | depth_anything | [Depth-Anything](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints_controlnet/diffusion_pytorch_model.safetensors) | | |
| | Zoe Depth Anything <br> (Basically Zoe but the encoder is replaced with DepthAnything) | depth_anything | [Depth-Anything](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints_controlnet/diffusion_pytorch_model.safetensors) | | |
| | Normal DSINE | | control_normal/control_v11p_sd15_normalbae | | |
| | Metric3D Depth | | control_v11f1p_sd15_depth <br> control_depth <br> t2iadapter_depth | | |
| | Metric3D Normal | | control_v11p_sd15_normalbae | | |
| | Depth Anything V2 | | [Depth-Anything](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints_controlnet/diffusion_pytorch_model.safetensors) | | |
| ## Faces and Poses Estimators | |
| | Preprocessor Node | sd-webui-controlnet/other | ControlNet/T2I-Adapter | | |
| |-----------------------------|---------------------------|-------------------------------------------| | |
| | DWPose Estimator | dw_openpose_full | control_v11p_sd15_openpose <br> control_openpose <br> t2iadapter_openpose | | |
| | OpenPose Estimator | openpose (detect_body) <br> openpose_hand (detect_body + detect_hand) <br> openpose_faceonly (detect_face) <br> openpose_full (detect_hand + detect_body + detect_face) | control_v11p_sd15_openpose <br> control_openpose <br> t2iadapter_openpose | | |
| | MediaPipe Face Mesh | mediapipe_face | controlnet_sd21_laion_face_v2 | | |
| | Animal Estimator | animal_openpose | [control_sd15_animal_openpose_fp16](https://huggingface.co/huchenlei/animal_openpose/blob/main/control_sd15_animal_openpose_fp16.pth) | | |
| ## Optical Flow Estimators | |
| | Preprocessor Node | sd-webui-controlnet/other | ControlNet/T2I-Adapter | | |
| |-----------------------------|---------------------------|-------------------------------------------| | |
| | Unimatch Optical Flow | | [DragNUWA](https://github.com/ProjectNUWA/DragNUWA) | | |
| ### How to get OpenPose-format JSON? | |
| #### User-side | |
| This workflow will save images to ComfyUI's output folder (the same location as output images). If you haven't found `Save Pose Keypoints` node, update this extension | |
|  | |
| #### Dev-side | |
| An array of [OpenPose-format JSON](https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/02_output.md#json-output-format) corresponsding to each frame in an IMAGE batch can be gotten from DWPose and OpenPose using `app.nodeOutputs` on the UI or `/history` API endpoint. JSON output from AnimalPose uses a kinda similar format to OpenPose JSON: | |
| ``` | |
| [ | |
| { | |
| "version": "ap10k", | |
| "animals": [ | |
| [[x1, y1, 1], [x2, y2, 1],..., [x17, y17, 1]], | |
| [[x1, y1, 1], [x2, y2, 1],..., [x17, y17, 1]], | |
| ... | |
| ], | |
| "canvas_height": 512, | |
| "canvas_width": 768 | |
| }, | |
| ... | |
| ] | |
| ``` | |
| For extension developers (e.g. Openpose editor): | |
| ```js | |
| const poseNodes = app.graph._nodes.filter(node => ["OpenposePreprocessor", "DWPreprocessor", "AnimalPosePreprocessor"].includes(node.type)) | |
| for (const poseNode of poseNodes) { | |
| const openposeResults = JSON.parse(app.nodeOutputs[poseNode.id].openpose_json[0]) | |
| console.log(openposeResults) //An array containing Openpose JSON for each frame | |
| } | |
| ``` | |
| For API users: | |
| Javascript | |
| ```js | |
| import fetch from "node-fetch" //Remember to add "type": "module" to "package.json" | |
| async function main() { | |
| const promptId = '792c1905-ecfe-41f4-8114-83e6a4a09a9f' //Too lazy to POST /queue | |
| let history = await fetch(`http://127.0.0.1:8188/history/${promptId}`).then(re => re.json()) | |
| history = history[promptId] | |
| const nodeOutputs = Object.values(history.outputs).filter(output => output.openpose_json) | |
| for (const nodeOutput of nodeOutputs) { | |
| const openposeResults = JSON.parse(nodeOutput.openpose_json[0]) | |
| console.log(openposeResults) //An array containing Openpose JSON for each frame | |
| } | |
| } | |
| main() | |
| ``` | |
| Python | |
| ```py | |
| import json, urllib.request | |
| server_address = "127.0.0.1:8188" | |
| prompt_id = '' #Too lazy to POST /queue | |
| def get_history(prompt_id): | |
| with urllib.request.urlopen("http://{}/history/{}".format(server_address, prompt_id)) as response: | |
| return json.loads(response.read()) | |
| history = get_history(prompt_id)[prompt_id] | |
| for o in history['outputs']: | |
| for node_id in history['outputs']: | |
| node_output = history['outputs'][node_id] | |
| if 'openpose_json' in node_output: | |
| print(json.loads(node_output['openpose_json'][0])) #An list containing Openpose JSON for each frame | |
| ``` | |
| ## Semantic Segmentation | |
| | Preprocessor Node | sd-webui-controlnet/other | ControlNet/T2I-Adapter | | |
| |-----------------------------|---------------------------|-------------------------------------------| | |
| | OneFormer ADE20K Segmentor | oneformer_ade20k | control_v11p_sd15_seg | | |
| | OneFormer COCO Segmentor | oneformer_coco | control_v11p_sd15_seg | | |
| | UniFormer Segmentor | segmentation |control_sd15_seg <br> control_v11p_sd15_seg| | |
| ## T2IAdapter-only | |
| | Preprocessor Node | sd-webui-controlnet/other | ControlNet/T2I-Adapter | | |
| |-----------------------------|---------------------------|-------------------------------------------| | |
| | Color Pallete | color | t2iadapter_color | | |
| | Content Shuffle | shuffle | t2iadapter_style | | |
| ## Recolor | |
| | Preprocessor Node | sd-webui-controlnet/other | ControlNet/T2I-Adapter | | |
| |-----------------------------|---------------------------|-------------------------------------------| | |
| | Image Luminance | recolor_luminance | [ioclab_sd15_recolor](https://huggingface.co/lllyasviel/sd_control_collection/resolve/main/ioclab_sd15_recolor.safetensors) <br> [sai_xl_recolor_256lora](https://huggingface.co/lllyasviel/sd_control_collection/resolve/main/sai_xl_recolor_256lora.safetensors) <br> [bdsqlsz_controlllite_xl_recolor_luminance](https://huggingface.co/bdsqlsz/qinglong_controlnet-lllite/resolve/main/bdsqlsz_controlllite_xl_recolor_luminance.safetensors) | | |
| | Image Intensity | recolor_intensity | Idk. Maybe same as above? | | |
| # Examples | |
| > A picture is worth a thousand words | |
| Credit to https://huggingface.co/thibaud/controlnet-sd21 for most examples below. You can get the same kind of results from preprocessor nodes of this repo. | |
| ## Line Extractors | |
| ### Canny Edge | |
|  | |
| ### HED Lines | |
|  | |
| ### Realistic Lineart | |
|  | |
| ### Scribble/Fake Scribble | |
|  | |
| ### TEED Soft-Edge Lines | |
|  | |
| ### Anyline Lineart | |
|  | |
| ## Normal and Depth Map | |
| ### Depth (idk the preprocessor they use) | |
|  | |
| ## Zoe - Depth Map | |
|  | |
| ## BAE - Normal Map | |
|  | |
| ## MeshGraphormer | |
|  | |
| ## Depth Anything & Zoe Depth Anything | |
|  | |
| ## DSINE | |
|  | |
| ## Metric3D | |
|  | |
| ## Depth Anything V2 | |
|  | |
| ## Faces and Poses | |
| ### OpenPose | |
|  | |
|  | |
| ### Animal Pose (AP-10K) | |
|  | |
| ### DensePose | |
|  | |
| ## Semantic Segmantation | |
| ### OneFormer ADE20K Segmentor | |
|  | |
| ### Anime Face Segmentor | |
|  | |
| ## T2IAdapter-only | |
| ### Color Pallete for T2I-Adapter | |
|  | |
| ## Optical Flow | |
| ### Unimatch | |
|  | |
| ## Recolor | |
|  | |
| # Testing workflow | |
| https://github.com/Fannovel16/comfyui_controlnet_aux/blob/master/tests/test_cn_aux_full.json | |
|  | |
| # Q&A: | |
| ## Why some nodes doesn't appear after I installed this repo? | |
| This repo has a new mechanism which will skip any custom node can't be imported. If you meet this case, please create a issue on [Issues tab](https://github.com/Fannovel16/comfyui_controlnet_aux/issues) with the log from the command line. | |
| ## DWPose/AnimalPose only uses CPU so it's so slow. How can I make it use GPU? | |
| There are two ways to speed-up DWPose: using TorchScript checkpoints (.torchscript.pt) checkpoints or ONNXRuntime (.onnx). TorchScript way is little bit slower than ONNXRuntime but doesn't require any additional library and still way way faster than CPU. | |
| A torchscript bbox detector is compatiable with an onnx pose estimator and vice versa. | |
| ### TorchScript | |
| Set `bbox_detector` and `pose_estimator` according to this picture. You can try other bbox detector endings with `.torchscript.pt` to reduce bbox detection time if input images are ideal. | |
|  | |
| ### ONNXRuntime | |
| If onnxruntime is installed successfully and the checkpoint used endings with `.onnx`, it will replace default cv2 backend to take advantage of GPU. Note that if you are using NVidia card, this method currently can only works on CUDA 11.8 (ComfyUI_windows_portable_nvidia_cu118_or_cpu.7z) unless you compile onnxruntime yourself. | |
| 1. Know your onnxruntime build: | |
| * * NVidia CUDA 11.x or bellow/AMD GPU: `onnxruntime-gpu` | |
| * * NVidia CUDA 12.x: `onnxruntime-gpu --extra-index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/onnxruntime-cuda-12/pypi/simple/` | |
| * * DirectML: `onnxruntime-directml` | |
| * * OpenVINO: `onnxruntime-openvino` | |
| Note that if this is your first time using ComfyUI, please test if it can run on your device before doing next steps. | |
| 2. Add it into `requirements.txt` | |
| 3. Run `install.bat` or pip command mentioned in Installation | |
|  | |
| # Assets files of preprocessors | |
| * anime_face_segment: [bdsqlsz/qinglong_controlnet-lllite/Annotators/UNet.pth](https://huggingface.co/bdsqlsz/qinglong_controlnet-lllite/blob/main/Annotators/UNet.pth), [anime-seg/isnetis.ckpt](https://huggingface.co/skytnt/anime-seg/blob/main/isnetis.ckpt) | |
| * densepose: [LayerNorm/DensePose-TorchScript-with-hint-image/densepose_r50_fpn_dl.torchscript](https://huggingface.co/LayerNorm/DensePose-TorchScript-with-hint-image/blob/main/densepose_r50_fpn_dl.torchscript) | |
| * dwpose: | |
| * * bbox_detector: Either [yzd-v/DWPose/yolox_l.onnx](https://huggingface.co/yzd-v/DWPose/blob/main/yolox_l.onnx), [hr16/yolox-onnx/yolox_l.torchscript.pt](https://huggingface.co/hr16/yolox-onnx/blob/main/yolox_l.torchscript.pt), [hr16/yolo-nas-fp16/yolo_nas_l_fp16.onnx](https://huggingface.co/hr16/yolo-nas-fp16/blob/main/yolo_nas_l_fp16.onnx), [hr16/yolo-nas-fp16/yolo_nas_m_fp16.onnx](https://huggingface.co/hr16/yolo-nas-fp16/blob/main/yolo_nas_m_fp16.onnx), [hr16/yolo-nas-fp16/yolo_nas_s_fp16.onnx](https://huggingface.co/hr16/yolo-nas-fp16/blob/main/yolo_nas_s_fp16.onnx) | |
| * * pose_estimator: Either [hr16/DWPose-TorchScript-BatchSize5/dw-ll_ucoco_384_bs5.torchscript.pt](https://huggingface.co/hr16/DWPose-TorchScript-BatchSize5/blob/main/dw-ll_ucoco_384_bs5.torchscript.pt), [yzd-v/DWPose/dw-ll_ucoco_384.onnx](https://huggingface.co/yzd-v/DWPose/blob/main/dw-ll_ucoco_384.onnx) | |
| * animal_pose (ap10k): | |
| * * bbox_detector: Either [yzd-v/DWPose/yolox_l.onnx](https://huggingface.co/yzd-v/DWPose/blob/main/yolox_l.onnx), [hr16/yolox-onnx/yolox_l.torchscript.pt](https://huggingface.co/hr16/yolox-onnx/blob/main/yolox_l.torchscript.pt), [hr16/yolo-nas-fp16/yolo_nas_l_fp16.onnx](https://huggingface.co/hr16/yolo-nas-fp16/blob/main/yolo_nas_l_fp16.onnx), [hr16/yolo-nas-fp16/yolo_nas_m_fp16.onnx](https://huggingface.co/hr16/yolo-nas-fp16/blob/main/yolo_nas_m_fp16.onnx), [hr16/yolo-nas-fp16/yolo_nas_s_fp16.onnx](https://huggingface.co/hr16/yolo-nas-fp16/blob/main/yolo_nas_s_fp16.onnx) | |
| * * pose_estimator: Either [hr16/DWPose-TorchScript-BatchSize5/rtmpose-m_ap10k_256_bs5.torchscript.pt](https://huggingface.co/hr16/DWPose-TorchScript-BatchSize5/blob/main/rtmpose-m_ap10k_256_bs5.torchscript.pt), [hr16/UnJIT-DWPose/rtmpose-m_ap10k_256.onnx](https://huggingface.co/hr16/UnJIT-DWPose/blob/main/rtmpose-m_ap10k_256.onnx) | |
| * hed: [lllyasviel/Annotators/ControlNetHED.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/ControlNetHED.pth) | |
| * leres: [lllyasviel/Annotators/res101.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/res101.pth), [lllyasviel/Annotators/latest_net_G.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/latest_net_G.pth) | |
| * lineart: [lllyasviel/Annotators/sk_model.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/sk_model.pth), [lllyasviel/Annotators/sk_model2.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/sk_model2.pth) | |
| * lineart_anime: [lllyasviel/Annotators/netG.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/netG.pth) | |
| * manga_line: [lllyasviel/Annotators/erika.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/erika.pth) | |
| * mesh_graphormer: [hr16/ControlNet-HandRefiner-pruned/graphormer_hand_state_dict.bin](https://huggingface.co/hr16/ControlNet-HandRefiner-pruned/blob/main/graphormer_hand_state_dict.bin), [hr16/ControlNet-HandRefiner-pruned/hrnetv2_w64_imagenet_pretrained.pth](https://huggingface.co/hr16/ControlNet-HandRefiner-pruned/blob/main/hrnetv2_w64_imagenet_pretrained.pth) | |
| * midas: [lllyasviel/Annotators/dpt_hybrid-midas-501f0c75.pt](https://huggingface.co/lllyasviel/Annotators/blob/main/dpt_hybrid-midas-501f0c75.pt) | |
| * mlsd: [lllyasviel/Annotators/mlsd_large_512_fp32.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/mlsd_large_512_fp32.pth) | |
| * normalbae: [lllyasviel/Annotators/scannet.pt](https://huggingface.co/lllyasviel/Annotators/blob/main/scannet.pt) | |
| * oneformer: [lllyasviel/Annotators/250_16_swin_l_oneformer_ade20k_160k.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/250_16_swin_l_oneformer_ade20k_160k.pth) | |
| * open_pose: [lllyasviel/Annotators/body_pose_model.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/body_pose_model.pth), [lllyasviel/Annotators/hand_pose_model.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/hand_pose_model.pth), [lllyasviel/Annotators/facenet.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/facenet.pth) | |
| * pidi: [lllyasviel/Annotators/table5_pidinet.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/table5_pidinet.pth) | |
| * sam: [dhkim2810/MobileSAM/mobile_sam.pt](https://huggingface.co/dhkim2810/MobileSAM/blob/main/mobile_sam.pt) | |
| * uniformer: [lllyasviel/Annotators/upernet_global_small.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/upernet_global_small.pth) | |
| * zoe: [lllyasviel/Annotators/ZoeD_M12_N.pt](https://huggingface.co/lllyasviel/Annotators/blob/main/ZoeD_M12_N.pt) | |
| * teed: [bdsqlsz/qinglong_controlnet-lllite/7_model.pth](https://huggingface.co/bdsqlsz/qinglong_controlnet-lllite/blob/main/Annotators/7_model.pth) | |
| * depth_anything: Either [LiheYoung/Depth-Anything/checkpoints/depth_anything_vitl14.pth](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints/depth_anything_vitl14.pth), [LiheYoung/Depth-Anything/checkpoints/depth_anything_vitb14.pth](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints/depth_anything_vitb14.pth) or [LiheYoung/Depth-Anything/checkpoints/depth_anything_vits14.pth](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints/depth_anything_vits14.pth) | |
| * diffusion_edge: Either [hr16/Diffusion-Edge/diffusion_edge_indoor.pt](https://huggingface.co/hr16/Diffusion-Edge/blob/main/diffusion_edge_indoor.pt), [hr16/Diffusion-Edge/diffusion_edge_urban.pt](https://huggingface.co/hr16/Diffusion-Edge/blob/main/diffusion_edge_urban.pt) or [hr16/Diffusion-Edge/diffusion_edge_natrual.pt](https://huggingface.co/hr16/Diffusion-Edge/blob/main/diffusion_edge_natrual.pt) | |
| * unimatch: Either [hr16/Unimatch/gmflow-scale2-regrefine6-mixdata.pth](https://huggingface.co/hr16/Unimatch/blob/main/gmflow-scale2-regrefine6-mixdata.pth), [hr16/Unimatch/gmflow-scale2-mixdata.pth](https://huggingface.co/hr16/Unimatch/blob/main/gmflow-scale2-mixdata.pth) or [hr16/Unimatch/gmflow-scale1-mixdata.pth](https://huggingface.co/hr16/Unimatch/blob/main/gmflow-scale1-mixdata.pth) | |
| * zoe_depth_anything: Either [LiheYoung/Depth-Anything/checkpoints_metric_depth/depth_anything_metric_depth_indoor.pt](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints_metric_depth/depth_anything_metric_depth_indoor.pt) or [LiheYoung/Depth-Anything/checkpoints_metric_depth/depth_anything_metric_depth_outdoor.pt](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints_metric_depth/depth_anything_metric_depth_outdoor.pt) | |
| # 1500 Stars 😄 | |
| <a href="https://star-history.com/#Fannovel16/comfyui_controlnet_aux&Date"> | |
| <picture> | |
| <source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=Fannovel16/comfyui_controlnet_aux&type=Date&theme=dark" /> | |
| <source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=Fannovel16/comfyui_controlnet_aux&type=Date" /> | |
| <img alt="Star History Chart" src="https://api.star-history.com/svg?repos=Fannovel16/comfyui_controlnet_aux&type=Date" /> | |
| </picture> | |
| </a> | |
| Thanks for yalls supports. I never thought the graph for stars would be linear lol. | |