eng-calc / app.txt
System Administrator
Add engineering calculator with multi-mode functionality
5f25c87
Build a gradio engineering calculator web application that provides standard, scientific, programming, and
ngineering calculator functionality, as well as unit converters between various units of measurement and currencies.
The users can use the calculator in different interface modes:
1.) standard - standard calculator button functionality which offers basic operations and evaluates commands immediately as they are entered.
2.) scientific - scientific calculator button functionality which offers basic operations and evaluates commands immediately as they are entered.
3.) engineering - engineering calculation functions
4.) programming - functionality which offers common mathematical operations for developers including conversion between common bases, scripting based calculations using input text areas and output text area.
Common functionality for all modes:
* Calculation history and memory capabilities.
* Infinite precision for basic arithmetic operations (addition, subtraction, multiplication, division) so that calculations never lose precision.
* Embedded AI chat interface
Calculator Key Mapping:
Addition:
(x + y) Addition, also known as summing or, more colloquially, “plus” is used to sum numbers together.
Subtraction:
(x - y) Subtraction, the “minus” sign, or sometimes difference, is used to find the numerical separation between two numbers, thus the term “difference”.
Multiplication:
(x * y) Multiplication, the product or “times” is represented sometimes by an “x” and sometimes by an asterisk “*”.
Division:
(x / y) Division, sometimes referred to as the quotient, is sometimes shown as a fraction, a “/” or the “÷” symbol. Which is supposedly called an “obelus” - who knew?
Scientific functions: In mathematics and in various fields of engineering, trigonometric functions are frequently used to solve different problems. It could be as simple as solving an unknown value of a right-angled triangle or solving the instantaneous power absorbed by an electrical element. Here are the trigonometric functions that you will encounter as you study mathematics and engineering:
Sine
In a right-angled triangle, the sine function can be used to relate the angle to the ratio of the length of the side opposite the angle and the hypotenuse. The sine function can be used in this scientific calculator by clicking the “sin” button.
Cosecant
The cosecant function is a reciprocal of the sine function.
Cosine
The cosine function is another trigonometric function that can be used to relate the angle of a right triangle to the ratio of the length of the side adjacent to the angle and the hypotenuse. It can be used in this scientific calculator by clicking the “cos” button.
Secant
The secant function is a reciprocal of the cosine function.
Tangent
The tangent function relates the angle of a right-angled triangle to the ratio of the length of the side opposite the angle and the side adjacent to the angle. This function can be used in this scientific calculator by clicking the “tan” button.
Cotangent
The cotangent function is a reciprocal of the tangent function.
Inverse Sine
The inverse sine (arcsine) trigonometric function can be used to determine the angle of a sine value. This can be used in this scientific calculator by clicking the “asin” button. The domain of an inverse sine function is from -1 to +1 and the range is from -90° to +90°.
Inverse Cosine
The inverse cosine (arccosine) trigonometric function can be used to determine the angle of a cosine value. To use this function, just click the “acos” button of this scientific calculator. The domain of the arccosine function is just the same with the arcsine function but its range is from 0 to +180°.
Inverse Tangent
The inverse tangent (arctangent) trigonometric function can be used to determine the angle of a tangent value from a domain covering all real numbers. The range of the arctangent function is from -90° to +90°. To use this function, click the “atan” button of this scientific calculator.
Other Functions:
Imaginary Unit
Whenever you multiply a negative number with a negative number, the result is a positive number. Specifically, any number squared will be a positive number, as it’ll either be a positive number multiplied by itself, yielding another positive number, or a negative number multiplied by itself, again yielding a positive number. Yet sometimes, you need something that, somehow, when multiplied by itself, gives a negative number. Mathematicians have called this number “i”, wherein (i2 = -1) To avoid confusion with the symbol for electrical current, in electrical engineering we frequently use “j” instead of “i”. In the calculator, simply use it as you would any other number, though you can’t use your keyboard to put it in - click on the bolded “i” box instead.
Factorial
Factorials are odd beasts that don’t show up very frequently but are important when you need them. Factorial is where you take a positive number, multiply it by...
for engineering mode the UI for Engineering mode should have a drop down combobox that updates the interface below the
combobox to enable users to perform the engineering function (calculation). The functions should
include these Engineering Functions:
3Ph Equivalent Impedance - calculates equivalent impedance and line currents for specified 5-wire (A,B,C,N,PE) system. source code for the calculations are provided for you, use it.:
import numpy as np
import pandas as pd
from typing import Dict, List, Tuple, Union
from dataclasses import dataclass
import matplotlib.pyplot as plt
import seaborn as sns
@dataclass
class ConductorParams:
#Data class for conductor electrical parameters"""
resistance: float # Ω/mile
gmr: float # feet (Geometric Mean Radius)
@dataclass
class Coordinate:
#Data class for conductor coordinates”””
x: float # feet
y: float # feet
class PowerSystemImpedanceCalculator:
#Advanced impedance calculator for 5-wire power systems using modified Carson’s equations
#and Kron reduction technique.
#The calculator implements industry-standard methods for computing equivalent impedance
#matrices in multi-conductor transmission and distribution lines.
# Carson's equation constants for 60 Hz, 100 Ω⋅m earth resistivity
CARSON_REAL_CONSTANT = 0.09530 # Ω/mile
CARSON_IMAG_COEFFICIENT = 0.12134 # Ω/mile
CARSON_IMAG_CONSTANT = 7.93402 # dimensionless
def __init__(self):
"""Initialize the calculator with default conductor labels"""
self.conductor_labels = ['a', 'b', 'c', 'n', 'pe']
self.phase_labels = ['a', 'b', 'c']
def calculate_distance_from_coordinates(self, coord1: Coordinate, coord2: Coordinate) -> float:
"""
Calculate Euclidean distance between two conductor coordinates.
Args:
coord1: First conductor coordinate
coord2: Second conductor coordinate
Returns:
Distance in feet
"""
dx = coord1.x - coord2.x
dy = coord1.y - coord2.y
return np.sqrt(dx**2 + dy**2)
def calculate_all_distances_from_coordinates(self, coordinates: Dict[str, Coordinate]) -> Dict[str, float]:
"""
Calculate all pairwise distances from conductor coordinates.
Args:
coordinates: Dictionary mapping conductor labels to coordinates
Returns:
Dictionary of pairwise distances with keys like 'ab', 'ac', etc.
"""
distances = {}
conductors = self.conductor_labels
# Generate all unique pairs
for i, cond1 in enumerate(conductors):
for j, cond2 in enumerate(conductors[i+1:], i+1):
key = f"{cond1}{cond2}"
distance = self.calculate_distance_from_coordinates(
coordinates[cond1], coordinates[cond2]
)
distances[key] = distance
return distances
def calculate_primitive_impedance_matrix(self,
distances: Dict[str, float],
conductor_params: Dict[str, ConductorParams]) -> np.ndarray:
"""
Calculate the 5×5 primitive impedance matrix using modified Carson's equations.
The primitive matrix includes all conductors (phases, neutral, PE) before reduction.
Self-impedances account for conductor resistance and earth return effects.
Mutual impedances account for electromagnetic coupling and earth return effects.
Args:
distances: Dictionary of pairwise distances between conductors
conductor_params: Dictionary of conductor electrical parameters
Returns:
5×5 complex impedance matrix [Ω/mile]
"""
n_conductors = len(self.conductor_labels)
matrix = np.zeros((n_conductors, n_conductors), dtype=complex)
# Calculate self-impedances (diagonal elements)
for i, conductor in enumerate(self.conductor_labels):
params = conductor_params[conductor]
# Modified Carson's equation for self-impedance
real_part = params.resistance + self.CARSON_REAL_CONSTANT
imag_part = self.CARSON_IMAG_COEFFICIENT * (
np.log(1.0 / params.gmr) + self.CARSON_IMAG_CONSTANT
)
matrix[i, i] = complex(real_part, imag_part)
# Calculate mutual impedances (off-diagonal elements)
# Mapping from matrix indices to distance dictionary keys
distance_map = {
(0, 1): 'ab', (0, 2): 'ac', (0, 3): 'an', (0, 4): 'ape',
(1, 2): 'bc', (1, 3): 'bn', (1, 4): 'bpe',
(2, 3): 'cn', (2, 4): 'cpe',
(3, 4): 'npe'
}
for (i, j), distance_key in distance_map.items():
distance = distances[distance_key]
# Modified Carson's equation for mutual impedance
real_part = self.CARSON_REAL_CONSTANT
imag_part = self.CARSON_IMAG_COEFFICIENT * (
np.log(1.0 / distance) + self.CARSON_IMAG_CONSTANT
)
mutual_impedance = complex(real_part, imag_part)
matrix[i, j] = mutual_impedance
matrix[j, i] = mutual_impedance # Symmetry
return matrix
def apply_kron_reduction(self, primitive_matrix: np.ndarray) -> np.ndarray:
"""
Apply Kron reduction to eliminate neutral and PE conductors from the impedance matrix.
Kron reduction preserves the electrical behavior of the phase conductors while
eliminating the neutral and protective earth conductors from the analysis.
The reduction formula is: Z_abc = Z_pp - Z_pq @ Z_qq^(-1) @ Z_qp
Args:
primitive_matrix: 5×5 primitive impedance matrix
Returns:
3×3 reduced impedance matrix for phase conductors only [Ω/mile]
"""
# Extract sub-matrices for Kron reduction
# Z_pp: phase-to-phase impedances (3×3) - indices 0,1,2 (a,b,c)
# Z_qq: neutral/PE impedances (2×2) - indices 3,4 (n,pe)
# Z_pq: phase-to-neutral/PE coupling (3×2)
# Z_qp: neutral/PE-to-phase coupling (2×3) - transpose of Z_pq
Z_pp = primitive_matrix[0:3, 0:3] # Phase conductors
Z_qq = primitive_matrix[3:5, 3:5] # Neutral and PE
Z_pq = primitive_matrix[0:3, 3:5] # Phase to neutral/PE coupling
Z_qp = primitive_matrix[3:5, 0:3] # Neutral/PE to phase coupling
# Calculate Z_qq inverse using robust numerical methods
try:
Z_qq_inv = np.linalg.inv(Z_qq)
except np.linalg.LinAlgError:
# Fallback to pseudo-inverse if matrix is singular
Z_qq_inv = np.linalg.pinv(Z_qq)
print("Warning: Z_qq matrix is singular, using pseudo-inverse")
# Apply Kron reduction formula
# Z_abc = Z_pp - Z_pq @ Z_qq^(-1) @ Z_qp
correction_term = Z_pq @ Z_qq_inv @ Z_qp
reduced_matrix = Z_pp - correction_term
return reduced_matrix
def calculate_impedance_from_distances(self,
distances: Dict[str, float],
conductor_params: Dict[str, ConductorParams]) -> Tuple[np.ndarray, np.ndarray]:
"""
Complete impedance calculation from conductor distances.
Args:
distances: Dictionary of pairwise conductor distances
conductor_params: Dictionary of conductor electrical parameters
Returns:
Tuple of (primitive_matrix, reduced_matrix)
"""
primitive_matrix = self.calculate_primitive_impedance_matrix(distances, conductor_params)
reduced_matrix = self.apply_kron_reduction(primitive_matrix)
return primitive_matrix, reduced_matrix
def calculate_impedance_from_coordinates(self,
coordinates: Dict[str, Coordinate],
conductor_params: Dict[str, ConductorParams]) -> Tuple[np.ndarray, np.ndarray, Dict[str, float]]:
"""
Complete impedance calculation from conductor coordinates.
Args:
coordinates: Dictionary mapping conductor labels to coordinates
conductor_params: Dictionary of conductor electrical parameters
Returns:
Tuple of (primitive_matrix, reduced_matrix, calculated_distances)
"""
distances = self.calculate_all_distances_from_coordinates(coordinates)
primitive_matrix, reduced_matrix = self.calculate_impedance_from_distances(distances, conductor_params)
return primitive_matrix, reduced_matrix, distances
def format_complex_matrix(self, matrix: np.ndarray, precision: int = 6) -> List[List[str]]:
"""
Format complex matrix for readable display.
Args:
matrix: Complex numpy array
precision: Number of decimal places
Returns:
List of lists containing formatted complex number strings
"""
formatted = []
for row in matrix:
formatted_row = []
for element in row:
real = f"{element.real:.{precision}f}"
imag = f"{element.imag:.{precision}f}"
sign = "+" if element.imag >= 0 else ""
formatted_row.append(f"{real} {sign} j{imag}")
formatted.append(formatted_row)
return formatted
def create_impedance_dataframe(self, matrix: np.ndarray, labels: List[str]) -> pd.DataFrame:
"""
Create a pandas DataFrame from impedance matrix for easier analysis.
Args:
matrix: Complex impedance matrix
labels: Row/column labels
Returns:
DataFrame with complex impedance values
"""
return pd.DataFrame(matrix, index=labels, columns=labels)
def analyze_matrix_properties(self, matrix: np.ndarray) -> Dict[str, Union[float, bool]]:
"""
Analyze impedance matrix properties for engineering insights.
Args:
matrix: Complex impedance matrix
Returns:
Dictionary containing matrix analysis results
"""
properties = {}
# Basic properties
properties['condition_number'] = np.linalg.cond(matrix)
properties['determinant'] = np.linalg.det(matrix)
properties['is_symmetric'] = np.allclose(matrix, matrix.T, rtol=1e-10)
properties['is_positive_definite'] = np.all(np.linalg.eigvals(matrix.real) > 0)
# Eigenvalue analysis
eigenvalues = np.linalg.eigvals(matrix)
properties['min_eigenvalue_real'] = np.min(eigenvalues.real)
properties['max_eigenvalue_real'] = np.max(eigenvalues.real)
properties['eigenvalue_spread'] = properties['max_eigenvalue_real'] / properties['min_eigenvalue_real']
# Impedance magnitude analysis
magnitudes = np.abs(matrix)
properties['min_impedance_magnitude'] = np.min(magnitudes)
properties['max_impedance_magnitude'] = np.max(magnitudes)
properties['avg_self_impedance_magnitude'] = np.mean(np.abs(np.diag(matrix)))
return properties
def plot_impedance_heatmap(self, matrix: np.ndarray, labels: List[str], title: str = "Impedance Matrix"):
"""
Create a heatmap visualization of impedance matrix magnitudes.
Args:
matrix: Complex impedance matrix
labels: Conductor labels
title: Plot title
"""
# Create magnitude matrix for visualization
magnitude_matrix = np.abs(matrix)
plt.figure(figsize=(10, 8))
sns.heatmap(magnitude_matrix,
annot=True,
fmt='.4f',
xticklabels=labels,
yticklabels=labels,
cmap='viridis',
cbar_kws={'label': 'Impedance Magnitude (Ω/mile)'})
plt.title(f"{title} - Magnitude")
plt.tight_layout()
plt.show()
# Example usage and test functions
def create_test_data():
#Create sample data for testing the calculator”””
# Sample conductor parameters (typical values)
conductor_params = {
'a': ConductorParams(resistance=0.055, gmr=0.038), # 4/0 ACSR
'b': ConductorParams(resistance=0.055, gmr=0.038), # 4/0 ACSR
'c': ConductorParams(resistance=0.055, gmr=0.038), # 4/0 ACSR
'n': ConductorParams(resistance=8.0, gmr=0.012), # #6 ACSR
'pe': ConductorParams(resistance=8.0, gmr=0.012) # #6 ACSR
}
# Sample coordinates (typical distribution line configuration)
coordinates = {
'a': Coordinate(x=0, y=42),
'b': Coordinate(x=23.5, y=42),
'c': Coordinate(x=47, y=42),
'n': Coordinate(x=10, y=74),
'pe': Coordinate(x=37, y=72)
}
return conductor_params, coordinates
def run_comprehensive_test():
#Run comprehensive test of the impedance calculator
print("=== Power System Impedance Calculator Test ===\n")
# Initialize calculator
calc = PowerSystemImpedanceCalculator()
# Create test data
conductor_params, coordinates = create_test_data()
print("1. Input Parameters:")
print(" Conductor Parameters:")
for label, params in conductor_params.items():
print(f" {label.upper()}: R={params.resistance:.3f} Ω/mile, GMR={params.gmr:.3f} ft")
print("\n Conductor Coordinates:")
for label, coord in coordinates.items():
print(f" {label.upper()}: ({coord.x:.1f}, {coord.y:.1f}) ft")
# Calculate impedances
print("\n2. Performing Calculations...")
primitive_matrix, reduced_matrix, distances = calc.calculate_impedance_from_coordinates(
coordinates, conductor_params
)
print(" ✓ Calculated distances from coordinates")
print(" ✓ Built primitive impedance matrix")
print(" ✓ Applied Kron reduction")
# Display calculated distances
print("\n3. Calculated Distances:")
for pair, distance in distances.items():
conductor1, conductor2 = pair[0].upper(), pair[1].upper()
print(f" {conductor1}-{conductor2}: {distance:.3f} ft")
# Display results
print("\n4. Primitive Impedance Matrix (5×5) [Ω/mile]:")
primitive_df = calc.create_impedance_dataframe(primitive_matrix, calc.conductor_labels)
for i, label in enumerate(calc.conductor_labels):
print(f" {label.upper()}: ", end="")
for j in range(5):
z = primitive_matrix[i, j]
print(f"{z.real:>8.3f}{z.imag:>+8.3f}j ", end="")
print()
print("\n5. Reduced Phase Impedance Matrix (3×3) [Ω/mile]:")
reduced_df = calc.create_impedance_dataframe(reduced_matrix, calc.phase_labels)
for i, label in enumerate(calc.phase_labels):
print(f" {label.upper()}: ", end="")
for j in range(3):
z = reduced_matrix[i, j]
print(f"{z.real:>8.3f}{z.imag:>+8.3f}j ", end="")
print()
# Matrix analysis
print("\n6. Matrix Analysis:")
properties = calc.analyze_matrix_properties(reduced_matrix)
print(f" Condition Number: {properties['condition_number']:.2e}")
print(f" Is Symmetric: {properties['is_symmetric']}")
print(f" Average Self-Impedance Magnitude: {properties['avg_self_impedance_magnitude']:.5f} Ω/mile")
print(f" Eigenvalue Spread: {properties['eigenvalue_spread']:.2f}")
print("\n7. Test completed successfully!")ß