eng-calc / engineering /impedance.py
System Administrator
Add engineering calculator with multi-mode functionality
5f25c87
import numpy as np
import pandas as pd
from typing import Dict, List, Tuple, Union
from dataclasses import dataclass
import matplotlib.pyplot as plt
import seaborn as sns
@dataclass
class ConductorParams:
"""Data class for conductor electrical parameters"""
resistance: float # Ω/mile
gmr: float # feet (Geometric Mean Radius)
@dataclass
class Coordinate:
"""Data class for conductor coordinates"""
x: float # feet
y: float # feet
class PowerSystemImpedanceCalculator:
"""
Advanced impedance calculator for 5-wire power systems using modified Carson's equations
and Kron reduction technique.
The calculator implements industry-standard methods for computing equivalent impedance
matrices in multi-conductor transmission and distribution lines.
"""
# Carson's equation constants for 60 Hz, 100 Ω⋅m earth resistivity
CARSON_REAL_CONSTANT = 0.09530 # Ω/mile
CARSON_IMAG_COEFFICIENT = 0.12134 # Ω/mile
CARSON_IMAG_CONSTANT = 7.93402 # dimensionless
def __init__(self):
"""Initialize the calculator with default conductor labels"""
self.conductor_labels = ['a', 'b', 'c', 'n', 'pe']
self.phase_labels = ['a', 'b', 'c']
def calculate_distance_from_coordinates(self, coord1: Coordinate, coord2: Coordinate) -> float:
"""
Calculate Euclidean distance between two conductor coordinates.
Args:
coord1: First conductor coordinate
coord2: Second conductor coordinate
Returns:
Distance in feet
"""
dx = coord1.x - coord2.x
dy = coord1.y - coord2.y
return np.sqrt(dx**2 + dy**2)
def calculate_all_distances_from_coordinates(self, coordinates: Dict[str, Coordinate]) -> Dict[str, float]:
"""
Calculate all pairwise distances from conductor coordinates.
Args:
coordinates: Dictionary mapping conductor labels to coordinates
Returns:
Dictionary of pairwise distances with keys like 'ab', 'ac', etc.
"""
distances = {}
conductors = self.conductor_labels
# Generate all unique pairs
for i, cond1 in enumerate(conductors):
for j, cond2 in enumerate(conductors[i+1:], i+1):
key = f"{cond1}{cond2}"
distance = self.calculate_distance_from_coordinates(
coordinates[cond1], coordinates[cond2]
)
distances[key] = distance
return distances
def calculate_primitive_impedance_matrix(self,
distances: Dict[str, float],
conductor_params: Dict[str, ConductorParams]) -> np.ndarray:
"""
Calculate the 5×5 primitive impedance matrix using modified Carson's equations.
The primitive matrix includes all conductors (phases, neutral, PE) before reduction.
Self-impedances account for conductor resistance and earth return effects.
Mutual impedances account for electromagnetic coupling and earth return effects.
Args:
distances: Dictionary of pairwise distances between conductors
conductor_params: Dictionary of conductor electrical parameters
Returns:
5×5 complex impedance matrix [Ω/mile]
"""
n_conductors = len(self.conductor_labels)
matrix = np.zeros((n_conductors, n_conductors), dtype=complex)
# Calculate self-impedances (diagonal elements)
for i, conductor in enumerate(self.conductor_labels):
params = conductor_params[conductor]
# Modified Carson's equation for self-impedance
real_part = params.resistance + self.CARSON_REAL_CONSTANT
imag_part = self.CARSON_IMAG_COEFFICIENT * (
np.log(1.0 / params.gmr) + self.CARSON_IMAG_CONSTANT
)
matrix[i, i] = complex(real_part, imag_part)
# Calculate mutual impedances (off-diagonal elements)
# Mapping from matrix indices to distance dictionary keys
distance_map = {
(0, 1): 'ab', (0, 2): 'ac', (0, 3): 'an', (0, 4): 'ape',
(1, 2): 'bc', (1, 3): 'bn', (1, 4): 'bpe',
(2, 3): 'cn', (2, 4): 'cpe',
(3, 4): 'npe'
}
for (i, j), distance_key in distance_map.items():
distance = distances[distance_key]
# Modified Carson's equation for mutual impedance
real_part = self.CARSON_REAL_CONSTANT
imag_part = self.CARSON_IMAG_COEFFICIENT * (
np.log(1.0 / distance) + self.CARSON_IMAG_CONSTANT
)
mutual_impedance = complex(real_part, imag_part)
matrix[i, j] = mutual_impedance
matrix[j, i] = mutual_impedance # Symmetry
return matrix
def apply_kron_reduction(self, primitive_matrix: np.ndarray) -> np.ndarray:
"""
Apply Kron reduction to eliminate neutral and PE conductors from the impedance matrix.
Kron reduction preserves the electrical behavior of the phase conductors while
eliminating the neutral and protective earth conductors from the analysis.
The reduction formula is: Z_abc = Z_pp - Z_pq @ Z_qq^(-1) @ Z_qp
Args:
primitive_matrix: 5×5 primitive impedance matrix
Returns:
3×3 reduced impedance matrix for phase conductors only [Ω/mile]
"""
# Extract sub-matrices for Kron reduction
# Z_pp: phase-to-phase impedances (3×3) - indices 0,1,2 (a,b,c)
# Z_qq: neutral/PE impedances (2×2) - indices 3,4 (n,pe)
# Z_pq: phase-to-neutral/PE coupling (3×2)
# Z_qp: neutral/PE-to-phase coupling (2×3) - transpose of Z_pq
Z_pp = primitive_matrix[0:3, 0:3] # Phase conductors
Z_qq = primitive_matrix[3:5, 3:5] # Neutral and PE
Z_pq = primitive_matrix[0:3, 3:5] # Phase to neutral/PE coupling
Z_qp = primitive_matrix[3:5, 0:3] # Neutral/PE to phase coupling
# Calculate Z_qq inverse using robust numerical methods
try:
Z_qq_inv = np.linalg.inv(Z_qq)
except np.linalg.LinAlgError:
# Fallback to pseudo-inverse if matrix is singular
Z_qq_inv = np.linalg.pinv(Z_qq)
print("Warning: Z_qq matrix is singular, using pseudo-inverse")
# Apply Kron reduction formula
# Z_abc = Z_pp - Z_pq @ Z_qq^(-1) @ Z_qp
correction_term = Z_pq @ Z_qq_inv @ Z_qp
reduced_matrix = Z_pp - correction_term
return reduced_matrix
def calculate_impedance_from_distances(self,
distances: Dict[str, float],
conductor_params: Dict[str, ConductorParams]) -> Tuple[np.ndarray, np.ndarray]:
"""
Complete impedance calculation from conductor distances.
Args:
distances: Dictionary of pairwise conductor distances
conductor_params: Dictionary of conductor electrical parameters
Returns:
Tuple of (primitive_matrix, reduced_matrix)
"""
primitive_matrix = self.calculate_primitive_impedance_matrix(distances, conductor_params)
reduced_matrix = self.apply_kron_reduction(primitive_matrix)
return primitive_matrix, reduced_matrix
def calculate_impedance_from_coordinates(self,
coordinates: Dict[str, Coordinate],
conductor_params: Dict[str, ConductorParams]) -> Tuple[np.ndarray, np.ndarray, Dict[str, float]]:
"""
Complete impedance calculation from conductor coordinates.
Args:
coordinates: Dictionary mapping conductor labels to coordinates
conductor_params: Dictionary of conductor electrical parameters
Returns:
Tuple of (primitive_matrix, reduced_matrix, calculated_distances)
"""
distances = self.calculate_all_distances_from_coordinates(coordinates)
primitive_matrix, reduced_matrix = self.calculate_impedance_from_distances(distances, conductor_params)
return primitive_matrix, reduced_matrix, distances
def format_complex_matrix(self, matrix: np.ndarray, precision: int = 6) -> List[List[str]]:
"""
Format complex matrix for readable display.
Args:
matrix: Complex numpy array
precision: Number of decimal places
Returns:
List of lists containing formatted complex number strings
"""
formatted = []
for row in matrix:
formatted_row = []
for element in row:
real = f"{element.real:.{precision}f}"
imag = f"{element.imag:.{precision}f}"
sign = "+" if element.imag >= 0 else ""
formatted_row.append(f"{real} {sign} j{imag}")
formatted.append(formatted_row)
return formatted
def create_impedance_dataframe(self, matrix: np.ndarray, labels: List[str]) -> pd.DataFrame:
"""
Create a pandas DataFrame from impedance matrix for easier analysis.
Args:
matrix: Complex impedance matrix
labels: Row/column labels
Returns:
DataFrame with complex impedance values
"""
return pd.DataFrame(matrix, index=labels, columns=labels)
def analyze_matrix_properties(self, matrix: np.ndarray) -> Dict[str, Union[float, bool]]:
"""
Analyze impedance matrix properties for engineering insights.
Args:
matrix: Complex impedance matrix
Returns:
Dictionary containing matrix analysis results
"""
properties = {}
# Basic properties
properties['condition_number'] = np.linalg.cond(matrix)
properties['determinant'] = np.linalg.det(matrix)
properties['is_symmetric'] = np.allclose(matrix, matrix.T, rtol=1e-10)
properties['is_positive_definite'] = np.all(np.linalg.eigvals(matrix.real) > 0)
# Eigenvalue analysis
eigenvalues = np.linalg.eigvals(matrix)
properties['min_eigenvalue_real'] = np.min(eigenvalues.real)
properties['max_eigenvalue_real'] = np.max(eigenvalues.real)
properties['eigenvalue_spread'] = properties['max_eigenvalue_real'] / properties['min_eigenvalue_real']
# Impedance magnitude analysis
magnitudes = np.abs(matrix)
properties['min_impedance_magnitude'] = np.min(magnitudes)
properties['max_impedance_magnitude'] = np.max(magnitudes)
properties['avg_self_impedance_magnitude'] = np.mean(np.abs(np.diag(matrix)))
return properties
def format_results_for_display(self, primitive_matrix: np.ndarray,
reduced_matrix: np.ndarray,
distances: Dict[str, float]) -> str:
"""
Format calculation results for display in Gradio interface.
Args:
primitive_matrix: 5×5 primitive impedance matrix
reduced_matrix: 3×3 reduced impedance matrix
distances: Dictionary of conductor distances
Returns:
Formatted string with results
"""
result = "=== 3-Phase Impedance Calculation Results ===\n\n"
# Display distances
result += "Conductor Distances:\n"
for pair, distance in distances.items():
conductor1, conductor2 = pair[0].upper(), pair[1].upper()
result += f" {conductor1}-{conductor2}: {distance:.3f} ft\n"
result += "\nPrimitive Impedance Matrix (5×5) [Ω/mile]:\n"
result += " "
for label in self.conductor_labels:
result += f"{label.upper():>15s}"
result += "\n"
for i, label in enumerate(self.conductor_labels):
result += f"{label.upper():>3s}: "
for j in range(5):
z = primitive_matrix[i, j]
result += f"{z.real:>7.3f}{z.imag:>+7.3f}j "
result += "\n"
result += "\nReduced Phase Impedance Matrix (3×3) [Ω/mile]:\n"
result += " "
for label in self.phase_labels:
result += f"{label.upper():>15s}"
result += "\n"
for i, label in enumerate(self.phase_labels):
result += f"{label.upper():>3s}: "
for j in range(3):
z = reduced_matrix[i, j]
result += f"{z.real:>7.3f}{z.imag:>+7.3f}j "
result += "\n"
# Add matrix analysis
properties = self.analyze_matrix_properties(reduced_matrix)
result += f"\nMatrix Analysis:\n"
result += f" Condition Number: {properties['condition_number']:.2e}\n"
result += f" Is Symmetric: {properties['is_symmetric']}\n"
result += f" Average Self-Impedance Magnitude: {properties['avg_self_impedance_magnitude']:.5f} Ω/mile\n"
return result
def create_test_data():
"""Create sample data for testing the calculator"""
# Sample conductor parameters (typical values)
conductor_params = {
'a': ConductorParams(resistance=0.055, gmr=0.038), # 4/0 ACSR
'b': ConductorParams(resistance=0.055, gmr=0.038), # 4/0 ACSR
'c': ConductorParams(resistance=0.055, gmr=0.038), # 4/0 ACSR
'n': ConductorParams(resistance=8.0, gmr=0.012), # #6 ACSR
'pe': ConductorParams(resistance=8.0, gmr=0.012) # #6 ACSR
}
# Sample coordinates (typical distribution line configuration)
coordinates = {
'a': Coordinate(x=0, y=42),
'b': Coordinate(x=23.5, y=42),
'c': Coordinate(x=47, y=42),
'n': Coordinate(x=10, y=74),
'pe': Coordinate(x=37, y=72)
}
return conductor_params, coordinates