File size: 18,882 Bytes
4a104a5 1d4156d 4a104a5 1d4156d 4a104a5 1d4156d 4a104a5 1d4156d 4a104a5 1d4156d 4a104a5 1d4156d 4a104a5 1d4156d 4a104a5 1d4156d 4a104a5 1d4156d 4a104a5 1d4156d 4a104a5 1d4156d 4a104a5 1d4156d 4a104a5 1d4156d 4a104a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 |
import gradio as gr
from transformers import AutoTokenizer
import json
import random
import math
tokenizer = AutoTokenizer.from_pretrained("openai/gpt-oss-20b")
# Mock tool functions
def weather_tool(location, days=1):
"""Get weather forecast for a location"""
weather_conditions = ["sunny", "cloudy", "rainy", "snowy", "partly cloudy"]
temps = random.randint(15, 35)
condition = random.choice(weather_conditions)
return {
"location": location,
"days": days,
"forecast": f"{condition}, {temps}°C"
}
def calculator_tool(operation, a, b=None):
"""Perform mathematical calculations"""
if operation == "add":
return a + b
elif operation == "subtract":
return a - b
elif operation == "multiply":
return a * b
elif operation == "divide":
return a / b if b != 0 else "Error: Division by zero"
elif operation == "sqrt":
return math.sqrt(a)
elif operation == "power":
return a ** b
else:
return "Error: Unknown operation"
def search_tool(query, num_results=3):
"""Mock web search results"""
mock_results = [
{"title": f"Result about {query} - Article 1", "url": f"https://example.com/{query.replace(' ', '-')}-1", "snippet": f"This is a comprehensive guide about {query} with detailed information..."},
{"title": f"{query} - Wikipedia", "url": f"https://en.wikipedia.org/wiki/{query.replace(' ', '_')}", "snippet": f"{query} is an important topic that covers various aspects..."},
{"title": f"Latest news on {query}", "url": f"https://news.example.com/{query.replace(' ', '-')}", "snippet": f"Recent developments and updates related to {query}..."},
]
return mock_results[:num_results]
def code_executor_tool(code):
"""Execute simple Python code (safe expressions only)"""
try:
# Only allow simple mathematical expressions for safety
allowed_names = {"__builtins__": {"abs": abs, "max": max, "min": min, "sum": sum, "len": len}}
result = eval(code, {"__builtins__": {}}, allowed_names)
return f"Result: {result}"
except Exception as e:
return f"Error: {str(e)}"
# Tool definitions for function calling
AVAILABLE_TOOLS = [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get weather forecast for a specific location",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string", "description": "The city and state/country"},
"days": {"type": "integer", "description": "Number of days for forecast (1-7)", "default": 1}
},
"required": ["location"]
}
}
},
{
"type": "function",
"function": {
"name": "calculate",
"description": "Perform mathematical calculations",
"parameters": {
"type": "object",
"properties": {
"operation": {"type": "string", "enum": ["add", "subtract", "multiply", "divide", "sqrt", "power"]},
"a": {"type": "number", "description": "First number"},
"b": {"type": "number", "description": "Second number (not needed for sqrt)"}
},
"required": ["operation", "a"]
}
}
},
{
"type": "function",
"function": {
"name": "web_search",
"description": "Search the web for information",
"parameters": {
"type": "object",
"properties": {
"query": {"type": "string", "description": "Search query"},
"num_results": {"type": "integer", "description": "Number of results (1-10)", "default": 3}
},
"required": ["query"]
}
}
},
{
"type": "function",
"function": {
"name": "execute_code",
"description": "Execute simple Python code expressions",
"parameters": {
"type": "object",
"properties": {
"code": {"type": "string", "description": "Python code expression to execute"}
},
"required": ["code"]
}
}
}
]
def tokenize_dialogue(dialogue_data):
"""
Tokenize the dialogue using the GPT-OSS tokenizer
"""
if tokenizer is None:
raise ValueError("Tokenizer not loaded. Please check your installation.")
messages = []
for message in dialogue_data:
role = message.get("speaker", "user")
content = message.get("text", "")
if role == "system":
messages.append({"role": "system", "content": content})
elif role == "user":
messages.append({"role": "user", "content": content})
elif role == "assistant":
messages.append({"role": "assistant", "content": content})
formatted_input = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="np"
)
token_ids = formatted_input[0].tolist()
decoded_text = []
colors = ["#FF6B6B", "#4ECDC4", "#45B7D1", "#96CEB4", "#FFEAA7"]
color_map = {}
for i, token_id in enumerate(token_ids):
color = colors[i % len(colors)]
if token_id not in color_map:
color_map[str(token_id)] = color
decoded_text.append((tokenizer.decode([token_id]), str(token_id)))
print("decoded_text", decoded_text)
return gr.HighlightedText(value=decoded_text, color_map=color_map), len(token_ids)
def tokenize_tool_conversation(messages_with_tools):
"""
Tokenize a conversation that includes tool calls and responses
"""
if tokenizer is None:
raise ValueError("Tokenizer not loaded. Please check your installation.")
# Preprocess messages to handle None content
processed_messages = []
for message in messages_with_tools:
processed_message = message.copy()
if processed_message.get("content") is None:
processed_message["content"] = ""
processed_messages.append(processed_message)
formatted_input = tokenizer.apply_chat_template(
processed_messages,
add_generation_prompt=False,
return_tensors="np"
)
token_ids = formatted_input[0].tolist()
decoded_text = []
colors = ["#FF6B6B", "#4ECDC4", "#45B7D1", "#96CEB4", "#FFEAA7", "#DDA0DD", "#98FB98", "#F0E68C"]
color_map = {}
for i, token_id in enumerate(token_ids):
color = colors[i % len(colors)]
if token_id not in color_map:
color_map[str(token_id)] = color
decoded_text.append((tokenizer.decode([token_id]), str(token_id)))
return gr.HighlightedText(value=decoded_text, color_map=color_map), len(token_ids)
def execute_tool_call(tool_name, arguments):
"""Execute a tool call and return the result"""
try:
if tool_name == "get_weather":
return weather_tool(**arguments)
elif tool_name == "calculate":
return calculator_tool(**arguments)
elif tool_name == "web_search":
return search_tool(**arguments)
elif tool_name == "execute_code":
return code_executor_tool(**arguments)
else:
return {"error": f"Unknown tool: {tool_name}"}
except Exception as e:
return {"error": str(e)}
def create_tool_conversation_examples():
"""Create example conversations with tool use"""
examples = {
"Weather Query": [
{"role": "system", "content": "You are a helpful assistant with access to weather information."},
{"role": "user", "content": "What's the weather like in Tokyo today?"},
{
"role": "assistant",
"content": "",
"tool_calls": [
{
"id": "call_1",
"type": "function",
"function": {
"name": "get_weather",
"arguments": json.dumps({"location": "Tokyo, Japan", "days": 1})
}
}
]
},
{
"role": "tool",
"content": json.dumps(weather_tool("Tokyo, Japan", 1)),
"tool_call_id": "call_1"
},
{"role": "assistant", "content": "The weather in Tokyo today is sunny with a temperature of 25°C. It looks like a great day to be outside!"}
],
"Math Calculation": [
{"role": "system", "content": "You are a helpful assistant that can perform calculations."},
{"role": "user", "content": "What's 15% tip on a $87.50 bill?"},
{
"role": "assistant",
"content": "",
"tool_calls": [
{
"id": "call_2",
"type": "function",
"function": {
"name": "calculate",
"arguments": json.dumps({"operation": "multiply", "a": 87.50, "b": 0.15})
}
}
]
},
{
"role": "tool",
"content": json.dumps({"result": calculator_tool("multiply", 87.50, 0.15)}),
"tool_call_id": "call_2"
},
{"role": "assistant", "content": "A 15% tip on an $87.50 bill would be $13.13. So your total would be $100.63."}
],
"Web Search": [
{"role": "system", "content": "You are a helpful assistant that can search for information."},
{"role": "user", "content": "Find me information about machine learning trends in 2024"},
{
"role": "assistant",
"content": "",
"tool_calls": [
{
"id": "call_3",
"type": "function",
"function": {
"name": "web_search",
"arguments": json.dumps({"query": "machine learning trends 2024", "num_results": 3})
}
}
]
},
{
"role": "tool",
"content": json.dumps(search_tool("machine learning trends 2024", 3)),
"tool_call_id": "call_3"
},
{"role": "assistant", "content": "I found several resources about machine learning trends in 2024. Based on the search results, key trends include advances in large language models, improved efficiency in AI training, and greater focus on responsible AI development."}
],
"Code Execution": [
{"role": "system", "content": "You are a helpful assistant that can execute Python code."},
{"role": "user", "content": "Calculate the sum of numbers from 1 to 100"},
{
"role": "assistant",
"content": "",
"tool_calls": [
{
"id": "call_4",
"type": "function",
"function": {
"name": "execute_code",
"arguments": json.dumps({"code": "sum(range(1, 101))"})
}
}
]
},
{
"role": "tool",
"content": json.dumps({"result": code_executor_tool("sum(range(1, 101))")}),
"tool_call_id": "call_4"
},
{"role": "assistant", "content": "The sum of numbers from 1 to 100 is 5,050."}
]
}
return examples
def create_sample_dialogue():
"""
Create a sample dialogue for demonstration
"""
return [
{"speaker": "system", "text": "You are a helpful assistant."},
{"speaker": "user", "text": "Hello! How are you today?"},
{"speaker": "assistant", "text": "I'm doing well, thank you for asking! How can I help you today?"},
{"speaker": "user", "text": "Can you explain what MXFP4 quantization is?"}
]
with gr.Blocks(title="GPT-OSS Tokenizer Explorer") as demo:
gr.Markdown("# GPT-OSS Tokenizer Explorer")
gr.Markdown("Explore how the GPT-OSS tokenizer processes regular conversations and tool-calling scenarios.")
with gr.Tabs():
with gr.TabItem("Regular Dialogue"):
gr.Markdown("Enter a dialogue and see how the GPT-OSS tokenizer processes it.")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Input Dialogue")
dialogue_input = gr.Dialogue(
speakers=["system", "user", "assistant"],
label="Enter your dialogue",
placeholder="Type 'system:', 'user:', or 'assistant:' followed by your message",
show_submit_button=True,
show_copy_button=True,
type="dialogue",
ui_mode="dialogue-only",
)
with gr.Row():
sample_btn = gr.Button("Load Sample", variant="secondary")
clear_btn = gr.Button("Clear", variant="secondary")
with gr.Column(scale=1):
gr.Markdown("### Tokenization Results")
highlighted_output = gr.HighlightedText(
label="Tokenized Output",
show_inline_category=False
)
token_count = gr.Label(
value="Total Tokens: 0",
label="Token Count"
)
with gr.TabItem("Tool Use Examples"):
gr.Markdown("See how the GPT-OSS tokenizer handles function calling and tool use conversations.")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Tool Use Scenarios")
example_dropdown = gr.Dropdown(
choices=["Weather Query", "Math Calculation", "Web Search", "Code Execution"],
value="Weather Query",
label="Select Example Scenario"
)
load_example_btn = gr.Button("Load Example", variant="primary")
gr.Markdown("### Available Tools")
tools_display = gr.JSON(
value=AVAILABLE_TOOLS,
label="Tool Definitions"
)
with gr.Column(scale=1):
gr.Markdown("### Tool Conversation Tokenization")
tool_highlighted_output = gr.HighlightedText(
label="Tokenized Tool Conversation",
show_inline_category=False
)
tool_token_count = gr.Label(
value="Total Tokens: 0",
label="Token Count"
)
gr.Markdown("### Conversation Preview")
conversation_display = gr.JSON(
label="Conversation Structure",
value=[]
)
with gr.Accordion("How to use", open=False):
gr.Markdown("""
### Regular Dialogue Tab:
1. **Enter dialogue**: Use the dialogue component to enter conversations
2. **Speaker format**: Type `system:`, `user:`, or `assistant:` followed by your message
3. **Submit**: Click 'Tokenize Dialogue' to process the conversation
4. **View results**: See the tokenization details in the output area
### Tool Use Examples Tab:
1. **Select scenario**: Choose from weather query, math calculation, web search, or code execution
2. **Load example**: Click 'Load Example' to see a tool-calling conversation
3. **Compare tokenization**: See how tool calls differ from regular messages
4. **Explore tools**: View available tool definitions and their parameters
### What you'll see:
- **Total tokens**: Number of tokens in the conversation
- **Tokenized output**: How the tokenizer formats conversations and tool calls
- **Tool definitions**: JSON schema for available functions
- **Conversation structure**: The complete message flow including tool calls and responses
""")
def process_dialogue(dialogue):
if not dialogue:
return "Please enter some dialogue first.", {}, "Total Tokens: 0"
result_text, token_count_val = tokenize_dialogue(dialogue)
return result_text, f"Total Tokens: {token_count_val}"
def clear_dialogue():
return None, [], "Total Tokens: 0"
def load_tool_example(example_name):
"""Load a tool use example and tokenize it"""
examples = create_tool_conversation_examples()
if example_name not in examples:
return gr.HighlightedText(value=[]), "Total Tokens: 0", []
conversation = examples[example_name]
try:
result_text, token_count_val = tokenize_tool_conversation(conversation)
return result_text, f"Total Tokens: {token_count_val}", conversation
except Exception as e:
error_msg = f"Error tokenizing conversation: {str(e)}"
return gr.HighlightedText(value=[(error_msg, "error")]), "Total Tokens: 0", conversation
sample_btn.click(
fn=create_sample_dialogue,
outputs=[dialogue_input]
)
clear_btn.click(
fn=clear_dialogue,
outputs=[dialogue_input, highlighted_output, token_count]
)
dialogue_input.submit(
fn=process_dialogue,
inputs=[dialogue_input],
outputs=[highlighted_output, token_count]
)
# Tool use event handlers
load_example_btn.click(
fn=load_tool_example,
inputs=[example_dropdown],
outputs=[tool_highlighted_output, tool_token_count, conversation_display]
)
if __name__ == "__main__":
demo.launch() |