Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import gradio as gr | |
from transformers import AutoTokenizer | |
tokenizer = AutoTokenizer.from_pretrained("openai/gpt-oss-20b") | |
def tokenize_dialogue(dialogue_data): | |
""" | |
Tokenize the dialogue using the GPT-OSS tokenizer | |
""" | |
if tokenizer is None: | |
raise ValueError("Tokenizer not loaded. Please check your installation.") | |
messages = [] | |
for message in dialogue_data: | |
role = message.get("speaker", "user") | |
content = message.get("text", "") | |
if role == "system": | |
messages.append({"role": "system", "content": content}) | |
elif role == "user": | |
messages.append({"role": "user", "content": content}) | |
elif role == "assistant": | |
messages.append({"role": "assistant", "content": content}) | |
formatted_input = tokenizer.apply_chat_template( | |
messages, | |
add_generation_prompt=True, | |
return_tensors="np" | |
) | |
token_ids = formatted_input[0].tolist() | |
decoded_text = [] | |
colors = ["#FF6B6B", "#4ECDC4", "#45B7D1", "#96CEB4", "#FFEAA7"] | |
color_map = {} | |
for i, token_id in enumerate(token_ids): | |
color = colors[i % len(colors)] | |
if token_id not in color_map: | |
color_map[str(token_id)] = color | |
decoded_text.append((tokenizer.decode([token_id]), str(token_id))) | |
print("decoded_text", decoded_text) | |
return gr.HighlightedText(value=decoded_text, color_map=color_map), len(token_ids) | |
def create_sample_dialogue(): | |
""" | |
Create a sample dialogue for demonstration | |
""" | |
return [ | |
{"speaker": "system", "text": "You are a helpful assistant."}, | |
{"speaker": "user", "text": "Hello! How are you today?"}, | |
{"speaker": "assistant", "text": "I'm doing well, thank you for asking! How can I help you today?"}, | |
{"speaker": "user", "text": "Can you explain what MXFP4 quantization is?"} | |
] | |
with gr.Blocks(title="GPT-OSS Tokenizer Explorer") as demo: | |
gr.Markdown("# GPT-OSS Tokenizer Explorer") | |
gr.Markdown("Enter a dialogue and see how the GPT-OSS tokenizer processes it. Use the format `speaker: message` in the dialogue component.") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("### Input Dialogue") | |
dialogue_input = gr.Dialogue( | |
speakers=["system", "user", "assistant"], | |
label="Enter your dialogue", | |
placeholder="Type 'system:', 'user:', or 'assistant:' followed by your message", | |
show_submit_button=True, | |
show_copy_button=True, | |
type="dialogue", | |
ui_mode="dialogue-only", | |
) | |
with gr.Row(): | |
sample_btn = gr.Button("Load Sample", variant="secondary") | |
clear_btn = gr.Button("Clear", variant="secondary") | |
with gr.Column(scale=1): | |
gr.Markdown("### Tokenization Results") | |
highlighted_output = gr.HighlightedText( | |
label="Tokenized Output", | |
show_inline_category=False | |
) | |
token_count = gr.Label( | |
value="Total Tokens: 0", | |
label="Token Count" | |
) | |
with gr.Accordion("How to use", open=False): | |
gr.Markdown(""" | |
### Instructions: | |
1. **Enter dialogue**: Use the dialogue component to enter conversations | |
2. **Speaker format**: Type `system:`, `user:`, or `assistant:` followed by your message | |
3. **Submit**: Click 'Tokenize Dialogue' to process the conversation | |
4. **View results**: See the tokenization details in the output area | |
### Example: | |
``` | |
system: You are a helpful assistant. | |
user: Hello! How are you today? | |
assistant: I'm doing well, thank you for asking! | |
``` | |
### What you'll see: | |
- **Total tokens**: Number of tokens in the conversation | |
- **Tokenized output**: How the tokenizer formats the conversation | |
""") | |
def process_dialogue(dialogue): | |
if not dialogue: | |
return "Please enter some dialogue first.", {}, "Total Tokens: 0" | |
result_text, token_count_val = tokenize_dialogue(dialogue) | |
return result_text, f"Total Tokens: {token_count_val}" | |
def clear_dialogue(): | |
return None, [], "Total Tokens: 0" | |
sample_btn.click( | |
fn=create_sample_dialogue, | |
outputs=[dialogue_input] | |
) | |
clear_btn.click( | |
fn=clear_dialogue, | |
outputs=[dialogue_input, highlighted_output, token_count] | |
) | |
dialogue_input.submit( | |
fn=process_dialogue, | |
inputs=[dialogue_input], | |
outputs=[highlighted_output, token_count] | |
) | |
if __name__ == "__main__": | |
demo.launch() |