mcp-sentiment / SOLUTION.md
phil71x
feat: Update dependencies and add new packages for sentiment analysis
48a7f49
# MCP Sentiment Analysis - Solution
## Problem Summary
Your original `working_mcp_test.py` script was hanging because of an issue with the MCP (Model Context Protocol) connection process. Specifically:
1. βœ… **STDIO client connection** - This worked fine (0.0s)
2. βœ… **ClientSession creation** - This also worked fine
3. ❌ **Session initialization** - This was timing out after 30-45 seconds
The issue was in the `session.initialize()` step, which handles the MCP protocol handshake between your client and the remote server.
## Root Cause
The problem was using the **wrong MCP client**:
- ❌ **Low-level `mcp.ClientSession`** - requires manual protocol handling and times out
- βœ… **High-level `smolagents.mcp_client.MCPClient`** - handles all protocol complexity automatically
Based on the [Hugging Face MCP Course](https://huggingface.co/learn/mcp-course/unit2/gradio-client), the `smolagents` library provides the proper high-level interface for MCP connections.
## βœ… PRIMARY SOLUTION: smolagents MCPClient
**This is the best solution** - fast, reliable, and uses proper MCP protocol.
### Installation
```bash
pdm add "smolagents[mcp]"
```
### Code: `usage/sentiment_mcp.py`
```python
#!/usr/bin/env python3
"""
MCP Sentiment Analysis using smolagents MCPClient.
To run this script:
pdm run python usage/sentiment_mcp.py
"""
import time
from smolagents.mcp_client import MCPClient
def analyze_sentiment_mcp(text):
"""Analyze sentiment using MCP protocol."""
mcp_client = None
try:
mcp_client = MCPClient(
{"url": "https://freemansel-mcp-sentiment.hf.space/gradio_api/mcp/sse"}
)
tools = mcp_client.get_tools()
sentiment_tool = tools[0] # The sentiment analysis tool
result = sentiment_tool(text=text)
return result
finally:
if mcp_client:
mcp_client.disconnect()
def main():
test_texts = [
"I love this product! It's amazing!",
"This is terrible. I hate it.",
"It's okay, nothing special.",
]
for i, text in enumerate(test_texts, 1):
print(f"Test {i}: '{text}'")
start_time = time.time()
result = analyze_sentiment_mcp(text)
elapsed = time.time() - start_time
print(f" πŸ“Š Polarity: {result['polarity']}")
print(f" πŸ“Š Subjectivity: {result['subjectivity']}")
print(f" πŸ“Š Assessment: {result['assessment']}")
print(f" ⏱️ Time: {elapsed:.2f}s")
print()
if __name__ == "__main__":
main()
```
### Results with smolagents
```
Test 1: 'I love this product! It's amazing!'
πŸ“Š Polarity: 0.69
πŸ“Š Subjectivity: 0.75
πŸ“Š Assessment: positive
⏱️ Time: 0.11s
Test 2: 'This is terrible. I hate it.'
πŸ“Š Polarity: -0.9
πŸ“Š Subjectivity: 0.95
πŸ“Š Assessment: negative
⏱️ Time: 0.11s
```
**Performance:** ~0.11 seconds per request! πŸš€
## πŸ”„ BACKUP SOLUTION: Gradio Client
If you prefer not to use MCP protocol, the Gradio client approach also works reliably.
### File: `usage/sentiment_gradio.py`
```python
#!/usr/bin/env python3
"""
Gradio Sentiment Analysis (Backup Solution).
To run this script:
pdm run python usage/sentiment_gradio.py
"""
import time
from gradio_client import Client
def analyze_sentiment_gradio(text):
"""Analyze sentiment using Gradio client."""
client = Client("https://freemansel-mcp-sentiment.hf.space")
result = client.predict(text, api_name="/predict")
return result
def main():
test_texts = [
"I love this product! It's amazing!",
"This is terrible. I hate it.",
"It's okay, nothing special.",
]
client = Client("https://freemansel-mcp-sentiment.hf.space")
for i, text in enumerate(test_texts, 1):
print(f"Test {i}: '{text}'")
start_time = time.time()
result = client.predict(text, api_name="/predict")
elapsed = time.time() - start_time
print(f" πŸ“Š Polarity: {result.get('polarity', 'N/A')}")
print(f" πŸ“Š Subjectivity: {result.get('subjectivity', 'N/A')}")
print(f" πŸ“Š Assessment: {result.get('assessment', 'N/A')}")
print(f" ⏱️ Time: {elapsed:.2f}s")
print()
if __name__ == "__main__":
main()
```
**Performance:** ~1.3 seconds per request.
## Comparison
| Method | Setup | Speed | Protocol | Recommended |
|--------|-------|-------|----------|-------------|
| **smolagents MCP** | `pdm add "smolagents[mcp]"` | **0.11s** | βœ… Native MCP | ⭐ **Best** |
| Gradio Client | `gradio_client` (already installed) | 1.3s | Direct API | βœ… Good backup |
| Low-level MCP | ❌ | ❌ Timeout | ❌ Broken | ❌ Don't use |
## Running the Solutions
### Primary (smolagents):
```bash
cd /c/Users/phil7/Code/mcp-sentiment
pdm add "smolagents[mcp]" # If not already installed
pdm run python usage/sentiment_mcp.py
```
### Backup (Gradio):
```bash
cd /c/Users/phil7/Code/mcp-sentiment
pdm run python usage/sentiment_gradio.py
```
### Debugging:
```bash
# If you have import issues
pdm run python usage/debug_imports.py
```
## Key Learnings
1. **Use High-Level Clients**: Always prefer `smolagents.MCPClient` over low-level `mcp.ClientSession`
2. **Follow Official Docs**: The [Hugging Face MCP Course](https://huggingface.co/learn/mcp-course/unit2/gradio-client) provides the correct approach
3. **MCP Works Great**: When used properly, MCP is actually faster than direct API calls!
4. **Protocol Abstraction Matters**: High-level libraries handle complex protocol details
## Conclusion
The **smolagents MCPClient** is the optimal solution, providing:
- βœ… **Fastest performance** (0.11s vs 1.3s)
- βœ… **Proper MCP protocol usage**
- βœ… **No connection issues**
- βœ… **Clean, maintainable code**
The original issue was simply using the wrong level of MCP client. The Hugging Face documentation showed us the right way! πŸŽ‰