Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,416 Bytes
3c7b849 75d84c2 3c7b849 27fc85d 5ecc81f 3c7b849 27fc85d 3c7b849 75d84c2 3c7b849 75d84c2 5ecc81f d02142b 5ecc81f 27fc85d f882a9b 5ecc81f cf9d1e9 d21d83c 3c7b849 d02142b d21d83c d02142b 957ab04 d21d83c 957ab04 d02142b 5ecc81f cf9d1e9 d02142b 5ecc81f 3c7b849 f882a9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import os
import spaces
import random
import shutil
import gradio as gr
from glob import glob
from pathlib import Path
import uuid
import argparse
import torch
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default='tencent/Hunyuan3D-2mini')
parser.add_argument("--subfolder", type=str, default='hunyuan3d-dit-v2-mini-turbo')
parser.add_argument("--texgen_model_path", type=str, default='tencent/Hunyuan3D-2')
parser.add_argument('--port', type=int, default=7860)
parser.add_argument('--host', type=str, default='0.0.0.0')
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('--mc_algo', type=str, default='mc')
parser.add_argument('--cache_path', type=str, default='gradio_cache')
parser.add_argument('--enable_t23d', action='store_true')
parser.add_argument('--disable_tex', action='store_true')
parser.add_argument('--enable_flashvdm', action='store_true')
parser.add_argument('--compile', action='store_true')
parser.add_argument('--low_vram_mode', action='store_true')
args = parser.parse_args()
args.enable_flashvdm = True
SAVE_DIR = args.cache_path
os.makedirs(SAVE_DIR, exist_ok=True)
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def gen_save_folder(max_size=200):
os.makedirs(SAVE_DIR, exist_ok=True)
# 获取所有文件夹路径
dirs = [f for f in Path(SAVE_DIR).iterdir() if f.is_dir()]
# 如果文件夹数量超过 max_size,删除创建时间最久的文件夹
if len(dirs) >= max_size:
# 按创建时间排序,最久的排在前面
oldest_dir = min(dirs, key=lambda x: x.stat().st_ctime)
shutil.rmtree(oldest_dir)
print(f"Removed the oldest folder: {oldest_dir}")
# 生成一个新的 uuid 文件夹名称
new_folder = os.path.join(SAVE_DIR, str(uuid.uuid4()))
os.makedirs(new_folder, exist_ok=True)
print(f"Created new folder: {new_folder}")
return new_folder
from hy3dgen.shapegen import FaceReducer, FloaterRemover, DegenerateFaceRemover, MeshSimplifier, \
Hunyuan3DDiTFlowMatchingPipeline
from hy3dgen.rembg import BackgroundRemover
rmbg_worker = BackgroundRemover()
i23d_worker = Hunyuan3DDiTFlowMatchingPipeline.from_pretrained(
args.model_path,
subfolder=args.subfolder,
use_safetensors=True,
device=args.device,
)
if args.enable_flashvdm:
mc_algo = 'mc' if args.device in ['cpu', 'mps'] else args.mc_algo
i23d_worker.enable_flashvdm(mc_algo=mc_algo)
if args.compile:
i23d_worker.compile()
progress=gr.Progress()
@spaces.GPU(duration=60)
def gen_shape(
image=None,
steps=50,
guidance_scale=7.5,
seed=1234,
octree_resolution=256,
num_chunks=200000,
target_face_num=10000,
randomize_seed: bool = False,
):
def callback(step_idx, timestep, outputs):
progress_value = (step_idx+1.0)/steps
progress(progress_value, desc=f"Mesh generating, {step_idx + 1}/{steps} steps")
if image is None:
raise gr.Error("Please provide either a caption or an image.")
seed = int(randomize_seed_fn(seed, randomize_seed))
octree_resolution = int(octree_resolution)
save_folder = gen_save_folder()
image = rmbg_worker(image.convert('RGB'))
generator = torch.Generator()
generator = generator.manual_seed(int(seed))
outputs = i23d_worker(
image=image,
num_inference_steps=steps,
guidance_scale=guidance_scale,
generator=generator,
octree_resolution=octree_resolution,
num_chunks=num_chunks,
output_type='mesh',
callback=callback
)
print(outputs)
def get_example_img_list():
print('Loading example img list ...')
return sorted(glob('./assets/example_images/**/*.png', recursive=True))
example_imgs = get_example_img_list()
HTML_OUTPUT_PLACEHOLDER = f"""
<div style='height: {650}px; width: 100%; border-radius: 8px; border-color: #e5e7eb; border-style: solid; border-width: 1px; display: flex; justify-content: center; align-items: center;'>
<div style='text-align: center; font-size: 16px; color: #6b7280;'>
<p style="color: #8d8d8d;">No mesh here.</p>
</div>
</div>
"""
MAX_SEED = 1e7
title = "## Image to 3D"
description = "A lightweight image to 3D converter"
with gr.Blocks().queue() as demo:
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column(scale=3):
gr.Markdown("#### Image Prompt")
image = gr.Image(sources=["upload"], label='Image', type='pil', image_mode='RGBA', height=290)
gen_button = gr.Button(value='Generate Shape', variant='primary')
with gr.Accordion("Advanced Options", open=False):
with gr.Column():
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=1234,
min_width=100,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Column():
num_steps = gr.Slider(maximum=100, minimum=1, value=5, step=1, label='Inference Steps')
octree_resolution = gr.Slider(maximum=512, minimum=16, value=256, label='Octree Resolution')
with gr.Column():
cfg_scale = gr.Slider(maximum=20.0, minimum=1.0, value=5.5, step=0.1, label='Guidance Scale')
num_chunks = gr.Slider(maximum=5000000, minimum=1000, value=8000, label='Number of Chunks')
target_face_num = gr.Slider(maximum=1000000, minimum=100, value=10000, label='Target Face Number')
with gr.Column(scale=6):
gr.Markdown("#### Generated Mesh")
html_export_mesh = gr.HTML(HTML_OUTPUT_PLACEHOLDER, label='Output')
with gr.Column(scale=3):
gr.Markdown("#### Image Examples")
gr.Examples(examples=example_imgs, inputs=[image],
label=None, examples_per_page=18)
gen_button.click(
fn=gen_shape,
inputs=[image,num_steps,cfg_scale,seed,octree_resolution,num_chunks,target_face_num, randomize_seed],
outputs=[html_export_mesh]
)
demo.launch() |