File size: 6,416 Bytes
3c7b849
75d84c2
3c7b849
 
27fc85d
5ecc81f
3c7b849
 
 
 
27fc85d
 
3c7b849
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75d84c2
3c7b849
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75d84c2
5ecc81f
 
 
 
 
d02142b
 
 
 
 
 
 
 
 
5ecc81f
 
27fc85d
 
 
f882a9b
5ecc81f
 
 
 
cf9d1e9
d21d83c
3c7b849
 
 
 
 
 
 
 
 
 
d02142b
d21d83c
d02142b
 
957ab04
d21d83c
957ab04
d02142b
5ecc81f
 
cf9d1e9
d02142b
5ecc81f
 
 
 
3c7b849
 
 
 
 
 
f882a9b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import os
import spaces
import random
import shutil
import gradio as gr
from glob import glob
from pathlib import Path
import uuid
import argparse
import torch


parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default='tencent/Hunyuan3D-2mini')
parser.add_argument("--subfolder", type=str, default='hunyuan3d-dit-v2-mini-turbo')
parser.add_argument("--texgen_model_path", type=str, default='tencent/Hunyuan3D-2')
parser.add_argument('--port', type=int, default=7860)
parser.add_argument('--host', type=str, default='0.0.0.0')
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('--mc_algo', type=str, default='mc')
parser.add_argument('--cache_path', type=str, default='gradio_cache')
parser.add_argument('--enable_t23d', action='store_true')
parser.add_argument('--disable_tex', action='store_true')
parser.add_argument('--enable_flashvdm', action='store_true')
parser.add_argument('--compile', action='store_true')
parser.add_argument('--low_vram_mode', action='store_true')
args = parser.parse_args()
args.enable_flashvdm = True

SAVE_DIR = args.cache_path
os.makedirs(SAVE_DIR, exist_ok=True)


def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed


def gen_save_folder(max_size=200):
    os.makedirs(SAVE_DIR, exist_ok=True)

    # 获取所有文件夹路径
    dirs = [f for f in Path(SAVE_DIR).iterdir() if f.is_dir()]

    # 如果文件夹数量超过 max_size,删除创建时间最久的文件夹
    if len(dirs) >= max_size:
        # 按创建时间排序,最久的排在前面
        oldest_dir = min(dirs, key=lambda x: x.stat().st_ctime)
        shutil.rmtree(oldest_dir)
        print(f"Removed the oldest folder: {oldest_dir}")

    # 生成一个新的 uuid 文件夹名称
    new_folder = os.path.join(SAVE_DIR, str(uuid.uuid4()))
    os.makedirs(new_folder, exist_ok=True)
    print(f"Created new folder: {new_folder}")

    return new_folder


from hy3dgen.shapegen import FaceReducer, FloaterRemover, DegenerateFaceRemover, MeshSimplifier, \
    Hunyuan3DDiTFlowMatchingPipeline
from hy3dgen.rembg import BackgroundRemover

rmbg_worker = BackgroundRemover()
i23d_worker = Hunyuan3DDiTFlowMatchingPipeline.from_pretrained(
    args.model_path,
    subfolder=args.subfolder,
    use_safetensors=True,
    device=args.device,
)
if args.enable_flashvdm:
    mc_algo = 'mc' if args.device in ['cpu', 'mps'] else args.mc_algo
    i23d_worker.enable_flashvdm(mc_algo=mc_algo)
if args.compile:
    i23d_worker.compile()

progress=gr.Progress()

@spaces.GPU(duration=60)
def gen_shape(
    image=None,
    steps=50,
    guidance_scale=7.5,
    seed=1234,
    octree_resolution=256,
    num_chunks=200000,
    target_face_num=10000,
    randomize_seed: bool = False,
):
    
    def callback(step_idx, timestep, outputs):
        progress_value = (step_idx+1.0)/steps
        progress(progress_value, desc=f"Mesh generating, {step_idx + 1}/{steps} steps")


    if image is None:
        raise gr.Error("Please provide either a caption or an image.")

    seed = int(randomize_seed_fn(seed, randomize_seed))
    octree_resolution = int(octree_resolution)
    save_folder = gen_save_folder()

    image = rmbg_worker(image.convert('RGB'))

    generator = torch.Generator()
    generator = generator.manual_seed(int(seed))
    outputs = i23d_worker(
        image=image,
        num_inference_steps=steps,
        guidance_scale=guidance_scale,
        generator=generator,
        octree_resolution=octree_resolution,
        num_chunks=num_chunks,
        output_type='mesh',
        callback=callback
    )
    print(outputs)



    
def get_example_img_list():
    print('Loading example img list ...')
    return sorted(glob('./assets/example_images/**/*.png', recursive=True))
example_imgs = get_example_img_list()

HTML_OUTPUT_PLACEHOLDER = f"""
<div style='height: {650}px; width: 100%; border-radius: 8px; border-color: #e5e7eb; border-style: solid; border-width: 1px; display: flex; justify-content: center; align-items: center;'>
    <div style='text-align: center; font-size: 16px; color: #6b7280;'>
    <p style="color: #8d8d8d;">No mesh here.</p>
    </div>
</div>
"""
MAX_SEED = 1e7

title = "## Image to 3D"
description = "A lightweight image to 3D converter"

with gr.Blocks().queue() as demo:
    gr.Markdown(title)
    gr.Markdown(description)
    with gr.Row():
        with gr.Column(scale=3):
            gr.Markdown("#### Image Prompt")
            image = gr.Image(sources=["upload"], label='Image', type='pil', image_mode='RGBA', height=290)
            gen_button = gr.Button(value='Generate Shape', variant='primary')
            with gr.Accordion("Advanced Options", open=False):
                with gr.Column():
                    seed = gr.Slider(
                        label="Seed",
                        minimum=0,
                        maximum=MAX_SEED,
                        step=1,
                        value=1234,
                        min_width=100,
                    )
                    randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                with gr.Column():
                    num_steps = gr.Slider(maximum=100, minimum=1, value=5, step=1, label='Inference Steps')
                    octree_resolution = gr.Slider(maximum=512, minimum=16, value=256, label='Octree Resolution')
                with gr.Column():
                    cfg_scale = gr.Slider(maximum=20.0, minimum=1.0, value=5.5, step=0.1, label='Guidance Scale')
                    num_chunks = gr.Slider(maximum=5000000, minimum=1000, value=8000, label='Number of Chunks')
                target_face_num = gr.Slider(maximum=1000000, minimum=100, value=10000, label='Target Face Number')

        with gr.Column(scale=6):
            gr.Markdown("#### Generated Mesh")
            html_export_mesh = gr.HTML(HTML_OUTPUT_PLACEHOLDER, label='Output')
                
        with gr.Column(scale=3):
            gr.Markdown("#### Image Examples")
            gr.Examples(examples=example_imgs, inputs=[image],
                        label=None, examples_per_page=18)
            
    gen_button.click(
        fn=gen_shape,
        inputs=[image,num_steps,cfg_scale,seed,octree_resolution,num_chunks,target_face_num, randomize_seed], 
        outputs=[html_export_mesh]
    )    

demo.launch()