Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,315 Bytes
3c7b849 75d84c2 3c7b849 27fc85d 5ecc81f 3c7b849 548fc2d 6e8b9a9 27fc85d 3c7b849 6e8b9a9 b28a26e 6e8b9a9 3c7b849 6e8b9a9 3c7b849 6e8b9a9 3c7b849 6e8b9a9 3c7b849 75d84c2 3c7b849 6e8b9a9 3c7b849 6e8b9a9 3c7b849 6e8b9a9 3c7b849 6e8b9a9 3c7b849 6e8b9a9 3c7b849 6e8b9a9 3c7b849 6e8b9a9 548fc2d 6e8b9a9 548fc2d 6e8b9a9 548fc2d 6e8b9a9 548fc2d 6e8b9a9 548fc2d 6e8b9a9 548fc2d 6e8b9a9 548fc2d 6e8b9a9 b28a26e 548fc2d b28a26e 548fc2d 6e8b9a9 548fc2d 6e8b9a9 548fc2d b28a26e 3c7b849 75d84c2 5ecc81f d02142b b28a26e d02142b 99722da 27fc85d f882a9b 5ecc81f cf9d1e9 d21d83c 3c7b849 d02142b d21d83c d02142b 957ab04 d21d83c 957ab04 d02142b 5ecc81f cf9d1e9 b28a26e d02142b 5ecc81f 3c7b849 b28a26e 3c7b849 f882a9b 548fc2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
import os
import spaces
import random
import shutil
import gradio as gr
from glob import glob
from pathlib import Path
import uuid
import argparse
import torch
import uvicorn
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
import trimesh
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default='tencent/Hunyuan3D-2mini')
parser.add_argument("--subfolder", type=str, default='hunyuan3d-dit-v2-mini-turbo')
parser.add_argument("--texgen_model_path", type=str, default='tencent/Hunyuan3D-2')
parser.add_argument('--port', type=int, default=7860)
parser.add_argument('--host', type=str, default='0.0.0.0')
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('--mc_algo', type=str, default='mc')
parser.add_argument('--cache_path', type=str, default='gradio_cache')
parser.add_argument('--enable_t23d', action='store_true')
parser.add_argument('--disable_tex', action='store_true')
parser.add_argument('--enable_flashvdm', action='store_true')
parser.add_argument('--compile', action='store_true')
parser.add_argument('--low_vram_mode', action='store_true')
args = parser.parse_args()
args.enable_flashvdm = True
SAVE_DIR = args.cache_path
os.makedirs(SAVE_DIR, exist_ok=True)
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
HTML_HEIGHT = 500
HTML_WIDTH = 500
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def gen_save_folder(max_size=200):
os.makedirs(SAVE_DIR, exist_ok=True)
# 获取所有文件夹路径
dirs = [f for f in Path(SAVE_DIR).iterdir() if f.is_dir()]
# 如果文件夹数量超过 max_size,删除创建时间最久的文件夹
if len(dirs) >= max_size:
# 按创建时间排序,最久的排在前面
oldest_dir = min(dirs, key=lambda x: x.stat().st_ctime)
shutil.rmtree(oldest_dir)
print(f"Removed the oldest folder: {oldest_dir}")
# 生成一个新的 uuid 文件夹名称
new_folder = os.path.join(SAVE_DIR, str(uuid.uuid4()))
os.makedirs(new_folder, exist_ok=True)
print(f"Created new folder: {new_folder}")
return new_folder
def export_mesh(mesh, save_folder, textured=False, type='glb'):
if textured:
path = os.path.join(save_folder, f'textured_mesh.{type}')
else:
path = os.path.join(save_folder, f'white_mesh.{type}')
if type not in ['glb', 'obj']:
mesh.export(path)
else:
mesh.export(path, include_normals=textured)
return path
def build_model_viewer_html(save_folder, height=660, width=790, textured=False):
# Remove first folder from path to make relative path
if textured:
related_path = f"./textured_mesh.glb"
template_name = './assets/modelviewer-textured-template.html'
output_html_path = os.path.join(save_folder, f'textured_mesh.html')
else:
related_path = f"./white_mesh.glb"
template_name = './assets/modelviewer-template.html'
output_html_path = os.path.join(save_folder, f'white_mesh.html')
offset = 50 if textured else 10
with open(os.path.join(CURRENT_DIR, template_name), 'r', encoding='utf-8') as f:
template_html = f.read()
with open(output_html_path, 'w', encoding='utf-8') as f:
template_html = template_html.replace('#height#', f'{height - offset}')
template_html = template_html.replace('#width#', f'{width}')
template_html = template_html.replace('#src#', f'{related_path}/')
f.write(template_html)
rel_path = os.path.relpath(output_html_path, SAVE_DIR)
iframe_tag = f'<iframe src="/static/{rel_path}" height="{height}" width="100%" frameborder="0"></iframe>'
print(
f'Find html file {output_html_path}, {os.path.exists(output_html_path)}, relative HTML path is /static/{rel_path}')
return f"""
<div style='height: {height}; width: 100%;'>
{iframe_tag}
</div>
"""
from hy3dgen.shapegen import FaceReducer, FloaterRemover, DegenerateFaceRemover, MeshSimplifier, \
Hunyuan3DDiTFlowMatchingPipeline
from hy3dgen.shapegen.pipelines import export_to_trimesh
from hy3dgen.rembg import BackgroundRemover
rmbg_worker = BackgroundRemover()
i23d_worker = Hunyuan3DDiTFlowMatchingPipeline.from_pretrained(
args.model_path,
subfolder=args.subfolder,
use_safetensors=True,
device=args.device,
)
if args.enable_flashvdm:
mc_algo = 'mc' if args.device in ['cpu', 'mps'] else args.mc_algo
i23d_worker.enable_flashvdm(mc_algo=mc_algo)
if args.compile:
i23d_worker.compile()
floater_remove_worker = FloaterRemover()
degenerate_face_remove_worker = DegenerateFaceRemover()
face_reduce_worker = FaceReducer()
progress=gr.Progress()
@spaces.GPU(duration=60)
def gen_shape(
image=None,
steps=50,
guidance_scale=7.5,
seed=1234,
octree_resolution=256,
num_chunks=200000,
target_face_num=10000,
randomize_seed: bool = False,
):
progress(0,desc="Starting")
def callback(step_idx, timestep, outputs):
progress_value = ((step_idx+1.0)/steps)*(0.5/1.0)
progress(progress_value, desc=f"Mesh generating, {step_idx + 1}/{steps} steps")
if image is None:
raise gr.Error("Please provide either a caption or an image.")
seed = int(randomize_seed_fn(seed, randomize_seed))
octree_resolution = int(octree_resolution)
save_folder = gen_save_folder()
# 先移除背景
image = rmbg_worker(image.convert('RGB'))
# 生成模型
generator = torch.Generator()
generator = generator.manual_seed(int(seed))
outputs = i23d_worker(
image=image,
num_inference_steps=steps,
guidance_scale=guidance_scale,
generator=generator,
octree_resolution=octree_resolution,
num_chunks=num_chunks,
output_type='mesh',
callback=callback,
callback_steps=1
)
mesh = export_to_trimesh(outputs)[0]
path = export_mesh(mesh, save_folder, textured=False)
# model_viewer_html = build_model_viewer_html(save_folder, height=HTML_HEIGHT, width=HTML_WIDTH)
# return model_viewer_html, path
if args.low_vram_mode:
torch.cuda.empty_cache()
if path is None:
raise gr.Error('Please generate a mesh first.')
# 简化模型
print(f'exporting {path}')
print(f'reduce face to {target_face_num}')
mesh = trimesh.load(path)
progress(0.5,desc="Optimizing mesh")
mesh = floater_remove_worker(mesh)
mesh = degenerate_face_remove_worker(mesh)
progress(0.6,desc="Reducing mesh faces")
mesh = face_reduce_worker(mesh, target_face_num)
save_folder = gen_save_folder()
progress(0.9,desc="Converting format")
file_type = "obj"
sourceObjPath = export_mesh(mesh, save_folder, textured=False, type=file_type)
rel_objPath = os.path.relpath(sourceObjPath, SAVE_DIR)
objPath = "/static/"+rel_objPath
# for preview
save_folder = gen_save_folder()
_ = export_mesh(mesh, save_folder, textured=False)
model_viewer_html = build_model_viewer_html(save_folder, height=HTML_HEIGHT, width=HTML_WIDTH, textured=False)
glbPath = os.path.join(save_folder, f'white_mesh.glb')
rel_glbPath = os.path.relpath(glbPath, SAVE_DIR)
glbPath = "/static/"+rel_glbPath
progress(1,desc="Complete")
return model_viewer_html, gr.update(value=sourceObjPath, interactive=True), glbPath, objPath
def get_example_img_list():
print('Loading example img list ...')
return sorted(glob('./assets/example_images/**/*.png', recursive=True))
example_imgs = get_example_img_list()
HTML_OUTPUT_PLACEHOLDER = f"""
<div style='height: {500}px; width: 100%; border-radius: 8px; border-color: #e5e7eb; border-style: solid; border-width: 1px; display: flex; justify-content: center; align-items: center;'>
<div style='text-align: center; font-size: 16px; color: #6b7280;'>
<p style="color: #8d8d8d;">No mesh here.</p>
</div>
</div>
"""
MAX_SEED = 1e7
title = "## AI 3D Model Generator"
description = "Our Image-to-3D Generator transforms your 2D photos into stunning, AI generated 3D models—ready for games, AR/VR, or 3D printing. Our AI 3D Modeling is based on Hunyuan 2.0. Check more in [imgto3d.ai](https://www.imgto3d.ai)."
with gr.Blocks().queue() as demo:
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column(scale=3):
gr.Markdown("#### Image Prompt")
image = gr.Image(sources=["upload"], label='Image', type='pil', image_mode='RGBA', height=290)
gen_button = gr.Button(value='Generate Shape', variant='primary')
with gr.Accordion("Advanced Options", open=False):
with gr.Column():
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=1234,
min_width=100,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Column():
num_steps = gr.Slider(maximum=100, minimum=1, value=5, step=1, label='Inference Steps')
octree_resolution = gr.Slider(maximum=512, minimum=16, value=256, label='Octree Resolution')
with gr.Column():
cfg_scale = gr.Slider(maximum=20.0, minimum=1.0, value=5.5, step=0.1, label='Guidance Scale')
num_chunks = gr.Slider(maximum=5000000, minimum=1000, value=8000, label='Number of Chunks')
target_face_num = gr.Slider(maximum=1000000, minimum=100, value=10000, label='Target Face Number')
with gr.Column(scale=6):
gr.Markdown("#### Generated Mesh")
html_export_mesh = gr.HTML(HTML_OUTPUT_PLACEHOLDER, label='Output')
file_export = gr.DownloadButton(label="Download", variant='primary', interactive=False)
with gr.Row():
objPath_output = gr.Text(label="Obj Path",interactive=False)
glbPath_output = gr.Text(label="Glb Path",interactive=False)
with gr.Column(scale=3):
gr.Markdown("#### Image Examples")
gr.Examples(examples=example_imgs, inputs=[image],
label=None, examples_per_page=18)
gen_button.click(
fn=gen_shape,
inputs=[image,num_steps,cfg_scale,seed,octree_resolution,num_chunks,target_face_num, randomize_seed],
outputs=[html_export_mesh,file_export, glbPath_output, objPath_output]
)
# https://discuss.huggingface.co/t/how-to-serve-an-html-file/33921/2
# create a FastAPI app
app = FastAPI()
# create a static directory to store the static files
static_dir = Path(SAVE_DIR).absolute()
static_dir.mkdir(parents=True, exist_ok=True)
app.mount("/static", StaticFiles(directory=static_dir, html=True), name="static")
shutil.copytree('./assets/env_maps', os.path.join(static_dir, 'env_maps'), dirs_exist_ok=True)
if args.low_vram_mode:
torch.cuda.empty_cache()
app = gr.mount_gradio_app(app, demo, path="/")
# demo.launch()
uvicorn.run(app, host=args.host, port=args.port)
|