Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import spaces | |
import random | |
import shutil | |
import gradio as gr | |
from glob import glob | |
from pathlib import Path | |
import uuid | |
import argparse | |
import torch | |
import uvicorn | |
from fastapi import FastAPI | |
from fastapi.staticfiles import StaticFiles | |
import trimesh | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--model_path", type=str, default='tencent/Hunyuan3D-2mini') | |
parser.add_argument("--subfolder", type=str, default='hunyuan3d-dit-v2-mini-turbo') | |
parser.add_argument("--texgen_model_path", type=str, default='tencent/Hunyuan3D-2') | |
parser.add_argument('--port', type=int, default=7860) | |
parser.add_argument('--host', type=str, default='0.0.0.0') | |
parser.add_argument('--device', type=str, default='cuda') | |
parser.add_argument('--mc_algo', type=str, default='mc') | |
parser.add_argument('--cache_path', type=str, default='gradio_cache') | |
parser.add_argument('--enable_t23d', action='store_true') | |
parser.add_argument('--disable_tex', action='store_true') | |
parser.add_argument('--enable_flashvdm', action='store_true') | |
parser.add_argument('--compile', action='store_true') | |
parser.add_argument('--low_vram_mode', action='store_true') | |
args = parser.parse_args() | |
args.enable_flashvdm = True | |
SAVE_DIR = args.cache_path | |
os.makedirs(SAVE_DIR, exist_ok=True) | |
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__)) | |
HTML_HEIGHT = 500 | |
HTML_WIDTH = 500 | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def gen_save_folder(max_size=200): | |
os.makedirs(SAVE_DIR, exist_ok=True) | |
# 获取所有文件夹路径 | |
dirs = [f for f in Path(SAVE_DIR).iterdir() if f.is_dir()] | |
# 如果文件夹数量超过 max_size,删除创建时间最久的文件夹 | |
if len(dirs) >= max_size: | |
# 按创建时间排序,最久的排在前面 | |
oldest_dir = min(dirs, key=lambda x: x.stat().st_ctime) | |
shutil.rmtree(oldest_dir) | |
print(f"Removed the oldest folder: {oldest_dir}") | |
# 生成一个新的 uuid 文件夹名称 | |
new_folder = os.path.join(SAVE_DIR, str(uuid.uuid4())) | |
os.makedirs(new_folder, exist_ok=True) | |
print(f"Created new folder: {new_folder}") | |
return new_folder | |
def export_mesh(mesh, save_folder, textured=False, type='glb'): | |
if textured: | |
path = os.path.join(save_folder, f'textured_mesh.{type}') | |
else: | |
path = os.path.join(save_folder, f'white_mesh.{type}') | |
if type not in ['glb', 'obj']: | |
mesh.export(path) | |
else: | |
mesh.export(path, include_normals=textured) | |
return path | |
def build_model_viewer_html(save_folder, height=660, width=790, textured=False): | |
# Remove first folder from path to make relative path | |
if textured: | |
related_path = f"./textured_mesh.glb" | |
template_name = './assets/modelviewer-textured-template.html' | |
output_html_path = os.path.join(save_folder, f'textured_mesh.html') | |
else: | |
related_path = f"./white_mesh.glb" | |
template_name = './assets/modelviewer-template.html' | |
output_html_path = os.path.join(save_folder, f'white_mesh.html') | |
offset = 50 if textured else 10 | |
with open(os.path.join(CURRENT_DIR, template_name), 'r', encoding='utf-8') as f: | |
template_html = f.read() | |
with open(output_html_path, 'w', encoding='utf-8') as f: | |
template_html = template_html.replace('#height#', f'{height - offset}') | |
template_html = template_html.replace('#width#', f'{width}') | |
template_html = template_html.replace('#src#', f'{related_path}/') | |
f.write(template_html) | |
rel_path = os.path.relpath(output_html_path, SAVE_DIR) | |
iframe_tag = f'<iframe src="/static/{rel_path}" height="{height}" width="100%" frameborder="0"></iframe>' | |
print( | |
f'Find html file {output_html_path}, {os.path.exists(output_html_path)}, relative HTML path is /static/{rel_path}') | |
return f""" | |
<div style='height: {height}; width: 100%;'> | |
{iframe_tag} | |
</div> | |
""" | |
from hy3dgen.shapegen import FaceReducer, FloaterRemover, DegenerateFaceRemover, MeshSimplifier, \ | |
Hunyuan3DDiTFlowMatchingPipeline | |
from hy3dgen.shapegen.pipelines import export_to_trimesh | |
from hy3dgen.rembg import BackgroundRemover | |
rmbg_worker = BackgroundRemover() | |
i23d_worker = Hunyuan3DDiTFlowMatchingPipeline.from_pretrained( | |
args.model_path, | |
subfolder=args.subfolder, | |
use_safetensors=True, | |
device=args.device, | |
) | |
if args.enable_flashvdm: | |
mc_algo = 'mc' if args.device in ['cpu', 'mps'] else args.mc_algo | |
i23d_worker.enable_flashvdm(mc_algo=mc_algo) | |
if args.compile: | |
i23d_worker.compile() | |
floater_remove_worker = FloaterRemover() | |
degenerate_face_remove_worker = DegenerateFaceRemover() | |
face_reduce_worker = FaceReducer() | |
progress=gr.Progress() | |
def gen_shape( | |
image=None, | |
steps=50, | |
guidance_scale=7.5, | |
seed=1234, | |
octree_resolution=256, | |
num_chunks=200000, | |
target_face_num=10000, | |
randomize_seed: bool = False, | |
): | |
progress(0,desc="Starting") | |
def callback(step_idx, timestep, outputs): | |
progress_value = ((step_idx+1.0)/steps)*(0.5/1.0) | |
progress(progress_value, desc=f"Mesh generating, {step_idx + 1}/{steps} steps") | |
if image is None: | |
raise gr.Error("Please provide either a caption or an image.") | |
seed = int(randomize_seed_fn(seed, randomize_seed)) | |
octree_resolution = int(octree_resolution) | |
save_folder = gen_save_folder() | |
# 先移除背景 | |
image = rmbg_worker(image.convert('RGB')) | |
# 生成模型 | |
generator = torch.Generator() | |
generator = generator.manual_seed(int(seed)) | |
outputs = i23d_worker( | |
image=image, | |
num_inference_steps=steps, | |
guidance_scale=guidance_scale, | |
generator=generator, | |
octree_resolution=octree_resolution, | |
num_chunks=num_chunks, | |
output_type='mesh', | |
callback=callback, | |
callback_steps=1 | |
) | |
mesh = export_to_trimesh(outputs)[0] | |
path = export_mesh(mesh, save_folder, textured=False) | |
# model_viewer_html = build_model_viewer_html(save_folder, height=HTML_HEIGHT, width=HTML_WIDTH) | |
# return model_viewer_html, path | |
if args.low_vram_mode: | |
torch.cuda.empty_cache() | |
if path is None: | |
raise gr.Error('Please generate a mesh first.') | |
# 简化模型 | |
print(f'exporting {path}') | |
print(f'reduce face to {target_face_num}') | |
mesh = trimesh.load(path) | |
progress(0.5,desc="Optimizing mesh") | |
mesh = floater_remove_worker(mesh) | |
mesh = degenerate_face_remove_worker(mesh) | |
progress(0.6,desc="Reducing mesh faces") | |
mesh = face_reduce_worker(mesh, target_face_num) | |
save_folder = gen_save_folder() | |
progress(0.9,desc="Converting format") | |
file_type = "obj" | |
sourceObjPath = export_mesh(mesh, save_folder, textured=False, type=file_type) | |
rel_objPath = os.path.relpath(sourceObjPath, SAVE_DIR) | |
objPath = "/static/"+rel_objPath | |
# for preview | |
save_folder = gen_save_folder() | |
_ = export_mesh(mesh, save_folder, textured=False) | |
model_viewer_html = build_model_viewer_html(save_folder, height=HTML_HEIGHT, width=HTML_WIDTH, textured=False) | |
glbPath = os.path.join(save_folder, f'white_mesh.glb') | |
rel_glbPath = os.path.relpath(glbPath, SAVE_DIR) | |
glbPath = "/static/"+rel_glbPath | |
progress(1,desc="Complete") | |
return model_viewer_html, gr.update(value=sourceObjPath, interactive=True), glbPath, objPath | |
def get_example_img_list(): | |
print('Loading example img list ...') | |
return sorted(glob('./assets/example_images/**/*.png', recursive=True)) | |
example_imgs = get_example_img_list() | |
HTML_OUTPUT_PLACEHOLDER = f""" | |
<div style='height: {500}px; width: 100%; border-radius: 8px; border-color: #e5e7eb; border-style: solid; border-width: 1px; display: flex; justify-content: center; align-items: center;'> | |
<div style='text-align: center; font-size: 16px; color: #6b7280;'> | |
<p style="color: #8d8d8d;">No mesh here.</p> | |
</div> | |
</div> | |
""" | |
MAX_SEED = 1e7 | |
title = "## AI 3D Model Generator" | |
description = "Our Image-to-3D Generator transforms your 2D photos into stunning, AI generated 3D models—ready for games, AR/VR, or 3D printing. Our AI 3D Modeling is based on Hunyuan 2.0. Check more in [imgto3d.ai](https://www.imgto3d.ai)." | |
with gr.Blocks().queue() as demo: | |
gr.Markdown(title) | |
gr.Markdown(description) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
gr.Markdown("#### Image Prompt") | |
image = gr.Image(sources=["upload"], label='Image', type='pil', image_mode='RGBA', height=290) | |
gen_button = gr.Button(value='Generate Shape', variant='primary') | |
with gr.Accordion("Advanced Options", open=False): | |
with gr.Column(): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=1234, | |
min_width=100, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Column(): | |
num_steps = gr.Slider(maximum=100, minimum=1, value=5, step=1, label='Inference Steps') | |
octree_resolution = gr.Slider(maximum=512, minimum=16, value=256, label='Octree Resolution') | |
with gr.Column(): | |
cfg_scale = gr.Slider(maximum=20.0, minimum=1.0, value=5.5, step=0.1, label='Guidance Scale') | |
num_chunks = gr.Slider(maximum=5000000, minimum=1000, value=8000, label='Number of Chunks') | |
target_face_num = gr.Slider(maximum=1000000, minimum=100, value=10000, label='Target Face Number') | |
with gr.Column(scale=6): | |
gr.Markdown("#### Generated Mesh") | |
html_export_mesh = gr.HTML(HTML_OUTPUT_PLACEHOLDER, label='Output') | |
file_export = gr.DownloadButton(label="Download", variant='primary', interactive=False) | |
with gr.Row(): | |
objPath_output = gr.Text(label="Obj Path",interactive=False) | |
glbPath_output = gr.Text(label="Glb Path",interactive=False) | |
with gr.Column(scale=3): | |
gr.Markdown("#### Image Examples") | |
gr.Examples(examples=example_imgs, inputs=[image], | |
label=None, examples_per_page=18) | |
gen_button.click( | |
fn=gen_shape, | |
inputs=[image,num_steps,cfg_scale,seed,octree_resolution,num_chunks,target_face_num, randomize_seed], | |
outputs=[html_export_mesh,file_export, glbPath_output, objPath_output] | |
) | |
# https://discuss.huggingface.co/t/how-to-serve-an-html-file/33921/2 | |
# create a FastAPI app | |
app = FastAPI() | |
# create a static directory to store the static files | |
static_dir = Path(SAVE_DIR).absolute() | |
static_dir.mkdir(parents=True, exist_ok=True) | |
app.mount("/static", StaticFiles(directory=static_dir, html=True), name="static") | |
shutil.copytree('./assets/env_maps', os.path.join(static_dir, 'env_maps'), dirs_exist_ok=True) | |
if args.low_vram_mode: | |
torch.cuda.empty_cache() | |
app = gr.mount_gradio_app(app, demo, path="/") | |
# demo.launch() | |
uvicorn.run(app, host=args.host, port=args.port) | |