File size: 1,493 Bytes
41e6903
 
 
 
 
854f0cf
 
a76b117
 
 
 
41e6903
854f0cf
 
41e6903
 
 
 
 
a76b117
3ac1ccb
 
 
41e6903
 
 
 
 
 
 
854f0cf
41e6903
854f0cf
 
 
 
 
dacd4b7
41e6903
 
 
 
 
 
 
854f0cf
41e6903
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import gradio as gr
import torch
from transformers import AutoProcessor, LlavaForConditionalGeneration
from transformers import BitsAndBytesConfig

from sentence_transformers import SentenceTransformer, util

quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.float16
)

embedder = SentenceTransformer('all-mpnet-base-v2')

model_id = "llava-hf/llava-1.5-7b-hf"

processor = AutoProcessor.from_pretrained(model_id)
model = LlavaForConditionalGeneration.from_pretrained(
    model_id,
    quantization_config=quantization_config,
    device_map="auto",
    use_flash_attention_2=True,
    low_cpu_mem_usage=True
)


def text_to_image(image, prompt):
    prompt = f'USER: <image>\n{prompt}\nASSISTANT:'

    inputs = processor([prompt], images=[image], padding=True, return_tensors="pt").to(model.device)
    output = model.generate(**inputs, max_new_tokens=500)
    generated_text = processor.batch_decode(output, skip_special_tokens=True)
    text = generated_text.pop()
    text_output = text.split("ASSISTANT:")[-1]
    text_embeddings = embedder.encode(text_output)

    return text_output, dict(text_embeddings=text_embeddings)


demo = gr.Interface(
    fn=text_to_image,
    inputs=[
        gr.Image(label='Select an image to analyze', type='pil'),
        gr.Textbox(label='Enter Prompt')
    ],
    outputs=[gr.Textbox(label='Maurice says:'), gr.JSON(label='Embedded text')]
)

if __name__ == "__main__":
    demo.launch(show_api=False)