File size: 18,547 Bytes
b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc b98e447 d7fc5bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 |
import gradio as gr
import subprocess
import os
import tempfile
import librosa
import librosa.display
import matplotlib.pyplot as plt
import numpy as np
import scipy.ndimage
from pathlib import Path
import warnings
warnings.filterwarnings('ignore')
# Set matplotlib backend for web display
plt.switch_backend('Agg')
class AudioAnalyzer:
def __init__(self):
self.temp_dir = tempfile.mkdtemp()
def download_youtube_audio(self, video_url, progress=gr.Progress()):
"""Download audio from YouTube video using yt-dlp."""
if not video_url:
return None, "Please provide a YouTube URL"
progress(0.1, desc="Initializing download...")
output_dir = os.path.join(self.temp_dir, "downloaded_audio")
os.makedirs(output_dir, exist_ok=True)
# yt-dlp command to extract audio in mp3 format
command = [
"yt-dlp",
"-x",
"--audio-format", "mp3",
"-o", os.path.join(output_dir, "%(title)s.%(ext)s"),
"--no-playlist",
"--restrict-filenames",
video_url
]
try:
progress(0.3, desc="Downloading audio...")
result = subprocess.run(command, check=True, capture_output=True, text=True)
# Find the downloaded file
for file in os.listdir(output_dir):
if file.endswith('.mp3'):
file_path = os.path.join(output_dir, file)
progress(1.0, desc="Download complete!")
return file_path, f"Successfully downloaded: {file}"
return None, "Download completed but no audio file found"
except FileNotFoundError:
return None, "yt-dlp not found. Please install it: pip install yt-dlp"
except subprocess.CalledProcessError as e:
return None, f"Download failed: {e.stderr}"
except Exception as e:
return None, f"Unexpected error: {str(e)}"
def extract_basic_features(self, audio_path, sr=16000, progress=gr.Progress()):
"""Extract basic audio features and create visualizations."""
if not audio_path or not os.path.exists(audio_path):
return None, None, "Invalid audio file"
try:
progress(0.1, desc="Loading audio...")
y, sr = librosa.load(audio_path, sr=sr)
duration = librosa.get_duration(y=y, sr=sr)
# Limit to first 60 seconds for processing speed
max_duration = 60
if duration > max_duration:
y = y[:sr * max_duration]
duration = max_duration
progress(0.3, desc="Computing features...")
# Basic features
features = {}
features['duration'] = duration
features['sample_rate'] = sr
features['samples'] = len(y)
# Mel spectrogram
progress(0.5, desc="Computing mel spectrogram...")
hop_length = 512
S_mel = librosa.feature.melspectrogram(y=y, sr=sr, hop_length=hop_length)
S_dB = librosa.power_to_db(S_mel, ref=np.max)
# Other features
features['tempo'], _ = librosa.beat.beat_track(y=y, sr=sr)
features['mfcc'] = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13)
features['spectral_centroid'] = librosa.feature.spectral_centroid(y=y, sr=sr)[0]
features['spectral_rolloff'] = librosa.feature.spectral_rolloff(y=y, sr=sr)[0]
features['zero_crossing_rate'] = librosa.feature.zero_crossing_rate(y)[0]
progress(0.8, desc="Creating visualizations...")
# Create visualizations
fig, axes = plt.subplots(2, 2, figsize=(15, 10))
# Waveform
time_axis = librosa.frames_to_time(range(len(y)), sr=sr)
axes[0, 0].plot(time_axis, y)
axes[0, 0].set_title('Waveform')
axes[0, 0].set_xlabel('Time (s)')
axes[0, 0].set_ylabel('Amplitude')
# Mel spectrogram
librosa.display.specshow(S_dB, sr=sr, hop_length=hop_length,
x_axis='time', y_axis='mel', ax=axes[0, 1])
axes[0, 1].set_title('Mel Spectrogram')
# MFCC
librosa.display.specshow(features['mfcc'], sr=sr, x_axis='time', ax=axes[1, 0])
axes[1, 0].set_title('MFCC')
# Spectral features
times = librosa.frames_to_time(range(len(features['spectral_centroid'])), sr=sr, hop_length=hop_length)
axes[1, 1].plot(times, features['spectral_centroid'], label='Spectral Centroid')
axes[1, 1].plot(times, features['spectral_rolloff'], label='Spectral Rolloff')
axes[1, 1].set_title('Spectral Features')
axes[1, 1].set_xlabel('Time (s)')
axes[1, 1].legend()
plt.tight_layout()
# Save plot
plot_path = os.path.join(self.temp_dir, f"basic_features_{np.random.randint(10000)}.png")
plt.savefig(plot_path, dpi=150, bbox_inches='tight')
plt.close()
# Create summary text
summary = f"""
**Audio Summary:**
- Duration: {duration:.2f} seconds
- Sample Rate: {sr} Hz
- Estimated Tempo: {features['tempo']:.1f} BPM
- Number of Samples: {len(y):,}
**Feature Shapes:**
- MFCC: {features['mfcc'].shape}
- Spectral Centroid: {features['spectral_centroid'].shape}
- Spectral Rolloff: {features['spectral_rolloff'].shape}
- Zero Crossing Rate: {features['zero_crossing_rate'].shape}
"""
progress(1.0, desc="Analysis complete!")
return plot_path, summary, None
except Exception as e:
return None, None, f"Error processing audio: {str(e)}"
def extract_chroma_features(self, audio_path, sr=16000, progress=gr.Progress()):
"""Extract and visualize enhanced chroma features."""
if not audio_path or not os.path.exists(audio_path):
return None, "Invalid audio file"
try:
progress(0.1, desc="Loading audio...")
y, sr = librosa.load(audio_path, sr=sr)
# Limit to first 30 seconds for processing speed
max_duration = 30
if len(y) > sr * max_duration:
y = y[:sr * max_duration]
progress(0.3, desc="Computing chroma variants...")
# Original chroma
chroma_orig = librosa.feature.chroma_cqt(y=y, sr=sr)
# Harmonic-percussive separation
y_harm = librosa.effects.harmonic(y=y, margin=8)
chroma_harm = librosa.feature.chroma_cqt(y=y_harm, sr=sr)
progress(0.6, desc="Applying filters...")
# Non-local filtering
chroma_filter = np.minimum(chroma_harm,
librosa.decompose.nn_filter(chroma_harm,
aggregate=np.median,
metric='cosine'))
# Median filtering
chroma_smooth = scipy.ndimage.median_filter(chroma_filter, size=(1, 9))
# STFT-based chroma
chroma_stft = librosa.feature.chroma_stft(y=y, sr=sr)
# CENS features
chroma_cens = librosa.feature.chroma_cens(y=y, sr=sr)
progress(0.8, desc="Creating visualizations...")
# Create comprehensive visualization
fig, axes = plt.subplots(3, 2, figsize=(15, 12))
# Original vs Harmonic
librosa.display.specshow(chroma_orig, y_axis='chroma', x_axis='time', ax=axes[0, 0])
axes[0, 0].set_title('Original Chroma (CQT)')
librosa.display.specshow(chroma_harm, y_axis='chroma', x_axis='time', ax=axes[0, 1])
axes[0, 1].set_title('Harmonic Chroma')
# Filtered vs Smooth
librosa.display.specshow(chroma_filter, y_axis='chroma', x_axis='time', ax=axes[1, 0])
axes[1, 0].set_title('Non-local Filtered')
librosa.display.specshow(chroma_smooth, y_axis='chroma', x_axis='time', ax=axes[1, 1])
axes[1, 1].set_title('Median Filtered')
# STFT vs CENS
librosa.display.specshow(chroma_stft, y_axis='chroma', x_axis='time', ax=axes[2, 0])
axes[2, 0].set_title('Chroma (STFT)')
librosa.display.specshow(chroma_cens, y_axis='chroma', x_axis='time', ax=axes[2, 1])
axes[2, 1].set_title('CENS Features')
plt.tight_layout()
# Save plot
plot_path = os.path.join(self.temp_dir, f"chroma_features_{np.random.randint(10000)}.png")
plt.savefig(plot_path, dpi=150, bbox_inches='tight')
plt.close()
progress(1.0, desc="Chroma analysis complete!")
return plot_path, None
except Exception as e:
return None, f"Error processing chroma features: {str(e)}"
def generate_patches(self, audio_path, sr=16000, patch_duration=5.0, hop_duration=1.0, progress=gr.Progress()):
"""Generate fixed-duration patches for transformer input."""
if not audio_path or not os.path.exists(audio_path):
return None, None, "Invalid audio file"
try:
progress(0.1, desc="Loading audio...")
y, sr = librosa.load(audio_path, sr=sr)
progress(0.3, desc="Computing mel spectrogram...")
hop_length = 512
S_mel = librosa.feature.melspectrogram(y=y, sr=sr, hop_length=hop_length, n_mels=80)
S_dB = librosa.power_to_db(S_mel, ref=np.max)
progress(0.5, desc="Generating patches...")
# Convert time to frames
patch_frames = librosa.time_to_frames(patch_duration, sr=sr, hop_length=hop_length)
hop_frames = librosa.time_to_frames(hop_duration, sr=sr, hop_length=hop_length)
# Generate patches using librosa.util.frame
patches = librosa.util.frame(S_dB, frame_length=patch_frames, hop_length=hop_frames)
progress(0.8, desc="Creating visualizations...")
# Visualize patches
num_patches_to_show = min(6, patches.shape[-1])
fig, axes = plt.subplots(2, 3, figsize=(18, 8))
axes = axes.flatten()
for i in range(num_patches_to_show):
librosa.display.specshow(patches[..., i], y_axis='mel', x_axis='time',
ax=axes[i], sr=sr, hop_length=hop_length)
axes[i].set_title(f'Patch {i+1}')
# Hide unused subplots
for i in range(num_patches_to_show, len(axes)):
axes[i].set_visible(False)
plt.tight_layout()
# Save plot
plot_path = os.path.join(self.temp_dir, f"patches_{np.random.randint(10000)}.png")
plt.savefig(plot_path, dpi=150, bbox_inches='tight')
plt.close()
# Summary
summary = f"""
**Patch Generation Summary:**
- Total patches generated: {patches.shape[-1]}
- Patch duration: {patch_duration} seconds
- Hop duration: {hop_duration} seconds
- Patch shape (mels, time, patches): {patches.shape}
- Each patch covers {patch_frames} time frames
"""
progress(1.0, desc="Patch generation complete!")
return plot_path, summary, None
except Exception as e:
return None, None, f"Error generating patches: {str(e)}"
# Initialize analyzer
analyzer = AudioAnalyzer()
# Gradio interface functions
def process_youtube_url(url):
"""Process YouTube URL and return audio file."""
file_path, message = analyzer.download_youtube_audio(url)
if file_path:
return file_path, message, gr.update(visible=True)
else:
return None, message, gr.update(visible=False)
def analyze_audio_basic(audio_file):
"""Analyze audio file and return basic features."""
if audio_file is None:
return None, "Please upload an audio file or download from YouTube first."
plot_path, summary, error = analyzer.extract_basic_features(audio_file)
if error:
return None, error
return plot_path, summary
def analyze_audio_chroma(audio_file):
"""Analyze audio file for chroma features."""
if audio_file is None:
return None, "Please upload an audio file or download from YouTube first."
plot_path, error = analyzer.extract_chroma_features(audio_file)
if error:
return None, error
return plot_path, "Chroma feature analysis complete! This shows different chroma extraction methods for harmonic analysis."
def analyze_audio_patches(audio_file, patch_duration, hop_duration):
"""Generate transformer patches from audio."""
if audio_file is None:
return None, None, "Please upload an audio file or download from YouTube first."
plot_path, summary, error = analyzer.generate_patches(audio_file, patch_duration=patch_duration, hop_duration=hop_duration)
if error:
return None, None, error
return plot_path, summary
# Create Gradio interface
with gr.Blocks(title="π΅ Audio Analysis Suite", theme=gr.themes.Soft()) as app:
gr.Markdown("""
# π΅ Audio Analysis Suite
A comprehensive tool for audio feature extraction and analysis. Upload an audio file or download from YouTube to get started!
**Features:**
- π **Basic Features**: Waveform, Mel Spectrogram, MFCC, Spectral Analysis, Tempo Detection
- πΌ **Chroma Features**: Advanced harmonic content analysis with multiple extraction methods
- π§© **Transformer Patches**: Generate fixed-duration patches for deep learning applications
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### π Audio Input")
# YouTube downloader
with gr.Group():
gr.Markdown("**Download from YouTube:**")
youtube_url = gr.Textbox(
label="YouTube URL",
placeholder="https://www.youtube.com/watch?v=...",
info="Paste a YouTube video URL to extract audio"
)
download_btn = gr.Button("π₯ Download Audio", variant="primary")
download_status = gr.Textbox(label="Download Status", interactive=False)
# File upload
with gr.Group():
gr.Markdown("**Or upload audio file:**")
audio_file = gr.Audio(
label="Upload Audio File",
type="filepath",
info="Supported formats: MP3, WAV, FLAC, etc."
)
with gr.Column(scale=2):
gr.Markdown("### π Analysis Results")
with gr.Tabs():
with gr.Tab("π Basic Features"):
basic_plot = gr.Image(label="Feature Visualizations")
basic_summary = gr.Markdown()
basic_analyze_btn = gr.Button("π Analyze Basic Features", variant="secondary")
with gr.Tab("πΌ Chroma Features"):
chroma_plot = gr.Image(label="Chroma Visualizations")
chroma_summary = gr.Markdown()
chroma_analyze_btn = gr.Button("πΌ Analyze Chroma Features", variant="secondary")
with gr.Tab("π§© Transformer Patches"):
with gr.Row():
patch_duration = gr.Slider(
label="Patch Duration (seconds)",
minimum=1.0, maximum=10.0, value=5.0, step=0.5,
info="Duration of each patch"
)
hop_duration = gr.Slider(
label="Hop Duration (seconds)",
minimum=0.1, maximum=5.0, value=1.0, step=0.1,
info="Time between patch starts"
)
patches_plot = gr.Image(label="Generated Patches")
patches_summary = gr.Markdown()
patches_analyze_btn = gr.Button("π§© Generate Patches", variant="secondary")
gr.Markdown("""
### βΉοΈ Usage Tips
- **Processing is limited to 60 seconds** for basic features and 30 seconds for chroma analysis to ensure fast response times
- **YouTube downloads** respect platform terms of service
- **Visualizations** are high-quality and suitable for research/educational use
- **All processing** is done locally in your browser session
""")
# Event handlers
download_btn.click(
process_youtube_url,
inputs=[youtube_url],
outputs=[audio_file, download_status, basic_analyze_btn]
)
basic_analyze_btn.click(
analyze_audio_basic,
inputs=[audio_file],
outputs=[basic_plot, basic_summary]
)
chroma_analyze_btn.click(
analyze_audio_chroma,
inputs=[audio_file],
outputs=[chroma_plot, chroma_summary]
)
patches_analyze_btn.click(
analyze_audio_patches,
inputs=[audio_file, patch_duration, hop_duration],
outputs=[patches_plot, patches_summary]
)
# Auto-analyze when file is uploaded
audio_file.change(
analyze_audio_basic,
inputs=[audio_file],
outputs=[basic_plot, basic_summary]
)
if __name__ == "__main__":
app.launch()
|