File size: 18,031 Bytes
b98e447 d7fc5bc b98e447 d7fc5bc b98e447 1902030 b98e447 1902030 b98e447 1902030 d7fc5bc 1902030 b98e447 d7fc5bc 1902030 2ac66e6 1902030 2ac66e6 1902030 2ac66e6 1902030 d7fc5bc 1902030 d7fc5bc 1902030 d7fc5bc 1902030 d7fc5bc 1902030 d7fc5bc 1902030 d7fc5bc 1902030 d7fc5bc 1902030 4d9af98 1902030 2ac66e6 1902030 b98e447 d7fc5bc 1902030 d7fc5bc 1902030 d7fc5bc 1902030 d7fc5bc 1902030 4d9af98 1902030 2ac66e6 d7fc5bc 1902030 d7fc5bc 1902030 d7fc5bc 1902030 4d9af98 d7fc5bc 1902030 d7fc5bc 1902030 d7fc5bc 1902030 d7fc5bc 1902030 d7fc5bc 1902030 d7fc5bc 2ac66e6 1902030 4d9af98 d7fc5bc 1902030 4d9af98 1902030 d7fc5bc 1902030 d7fc5bc 2ac66e6 1902030 b98e447 1902030 d7fc5bc 1902030 d7fc5bc 1902030 b98e447 d7fc5bc 1902030 d7fc5bc 2ac66e6 d7fc5bc 1902030 d7fc5bc 1902030 d7fc5bc 2ac66e6 1902030 d7fc5bc 2ac66e6 1902030 b98e447 1902030 d7fc5bc 1902030 b98e447 d7fc5bc 1902030 2ac66e6 d7fc5bc 1902030 d7fc5bc 1902030 d7fc5bc 1902030 d7fc5bc 2ac66e6 d7fc5bc 1902030 d7fc5bc 1902030 d7fc5bc 2ac66e6 1902030 d7fc5bc 1902030 4d9af98 1902030 d7fc5bc 1902030 d7fc5bc 2ac66e6 1902030 b98e447 1902030 d7fc5bc b98e447 1902030 b98e447 1902030 d7fc5bc 4d9af98 1902030 2ac66e6 1902030 2ac66e6 1902030 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
import gradio as gr
import subprocess
import os
import tempfile
import librosa
import librosa.display
import matplotlib.pyplot as plt
import numpy as np
import scipy.ndimage
from pathlib import Path
import logging
import warnings
import shutil
from typing import Tuple, Optional, Dict, Any
# Configure matplotlib for web display
plt.switch_backend('Agg')
warnings.filterwarnings('ignore')
# Setup logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s",
handlers=[logging.StreamHandler()]
)
logger = logging.getLogger(__name__)
class AudioAnalyzer:
"""Core class for audio analysis with modular feature extraction methods."""
def __init__(self, temp_dir: Optional[str] = None):
"""Initialize with a temporary directory for file storage."""
self.temp_dir = Path(temp_dir or tempfile.mkdtemp())
self.temp_dir.mkdir(exist_ok=True)
self.plot_files = [] # Track plot files for cleanup
logger.info(f"Initialized temporary directory: {self.temp_dir}")
def cleanup(self) -> None:
"""Remove temporary directory and plot files."""
for plot_file in self.plot_files:
if Path(plot_file).exists():
try:
Path(plot_file).unlink()
logger.info(f"Removed plot file: {plot_file}")
except Exception as e:
logger.warning(f"Failed to remove plot file {plot_file}: {str(e)}")
if self.temp_dir.exists():
shutil.rmtree(self.temp_dir, ignore_errors=True)
logger.info(f"Cleaned up temporary directory: {self.temp_dir}")
def download_youtube_audio(self, video_url: str, progress=gr.Progress()) -> Tuple[Optional[str], str]:
"""Download audio from YouTube using yt-dlp."""
if not video_url:
return None, "Please provide a valid YouTube URL"
progress(0.1, desc="Initializing download...")
output_dir = self.temp_dir / "downloaded_audio"
output_dir.mkdir(exist_ok=True)
output_file = output_dir / "audio.mp3"
command = [
"yt-dlp",
"-x",
"--audio-format", "mp3",
"-o", str(output_file),
"--no-playlist",
"--restrict-filenames",
video_url
]
try:
progress(0.3, desc="Downloading audio...")
subprocess.run(command, check=True, capture_output=True, text=True)
progress(1.0, desc="Download complete!")
return str(output_file), f"Successfully downloaded audio: {output_file.name}"
except FileNotFoundError:
return None, "yt-dlp not found. Install it with: pip install yt-dlp"
except subprocess.CalledProcessError as e:
return None, f"Download failed: {e.stderr}"
except Exception as e:
logger.error(f"Unexpected error during download: {str(e)}")
return None, f"Error: {str(e)}"
def save_plot(self, fig, filename: str) -> Optional[str]:
"""Save matplotlib figure to a temporary file and verify existence."""
try:
# Use NamedTemporaryFile to ensure persistence
with tempfile.NamedTemporaryFile(suffix='.png', delete=False, dir=self.temp_dir) as tmp_file:
plot_path = tmp_file.name
fig.savefig(plot_path, dpi=300, bbox_inches='tight', format='png')
plt.close(fig)
if not Path(plot_path).exists():
logger.error(f"Plot file not created: {plot_path}")
return None
self.plot_files.append(plot_path)
logger.info(f"Saved plot: {plot_path}")
return str(plot_path)
except Exception as e:
logger.error(f"Error saving plot {filename}: {str(e)}")
plt.close(fig)
return None
def extract_basic_features(self, audio_path: str, sr: int = 16000, max_duration: float = 60.0,
progress=gr.Progress()) -> Tuple[Optional[str], Optional[str], Optional[str]]:
"""Extract basic audio features and generate visualizations."""
if not audio_path or not Path(audio_path).exists():
return None, None, "Invalid or missing audio file"
try:
progress(0.1, desc="Loading audio...")
y, sr = librosa.load(audio_path, sr=sr)
duration = librosa.get_duration(y=y, sr=sr)
if duration > max_duration:
y = y[:int(sr * max_duration)]
duration = max_duration
progress(0.3, desc="Computing features...")
features: Dict[str, Any] = {
'duration': duration,
'sample_rate': sr,
'samples': len(y),
'tempo': float(librosa.beat.beat_track(y=y, sr=sr)[0]), # Convert to float
'mfcc': librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13),
'spectral_centroid': librosa.feature.spectral_centroid(y=y, sr=sr)[0],
'spectral_rolloff': librosa.feature.spectral_rolloff(y=y, sr=sr)[0],
'zero_crossing_rate': librosa.feature.zero_crossing_rate(y)[0]
}
progress(0.5, desc="Computing mel spectrogram...")
hop_length = 512
S_mel = librosa.feature.melspectrogram(y=y, sr=sr, hop_length=hop_length, n_mels=80)
S_dB = librosa.power_to_db(S_mel, ref=np.max)
progress(0.8, desc="Creating visualizations...")
fig, axes = plt.subplots(2, 2, figsize=(15, 10))
time_axis = np.linspace(0, duration, len(y))
axes[0, 0].plot(time_axis, y)
axes[0, 0].set_title('Waveform')
axes[0, 0].set_xlabel('Time (s)')
axes[0, 0].set_ylabel('Amplitude')
librosa.display.specshow(S_dB, sr=sr, hop_length=hop_length,
x_axis='time', y_axis='mel', ax=axes[0, 1])
axes[0, 1].set_title('Mel Spectrogram')
librosa.display.specshow(features['mfcc'], sr=sr, x_axis='time', ax=axes[1, 0])
axes[1, 0].set_title('MFCC')
times = librosa.frames_to_time(range(len(features['spectral_centroid'])), sr=sr, hop_length=hop_length)
axes[1, 1].plot(times, features['spectral_centroid'], label='Spectral Centroid')
axes[1, 1].plot(times, features['spectral_rolloff'], label='Spectral Rolloff')
axes[1, 1].set_title('Spectral Features')
axes[1, 1].set_xlabel('Time (s)')
axes[1, 1].legend()
plt.tight_layout()
plot_path = self.save_plot(fig, "basic_features")
if not plot_path:
return None, None, "Failed to save feature visualizations"
# Validate feature shapes
for key in ['mfcc', 'spectral_centroid', 'spectral_rolloff', 'zero_crossing_rate']:
if not isinstance(features[key].shape, tuple):
logger.error(f"Invalid shape for {key}: {features[key].shape}")
return None, None, f"Invalid feature shape for {key}"
summary = f"""
**Audio Summary:**
- Duration: {duration:.2f} seconds
- Sample Rate: {sr} Hz
- Estimated Tempo: {features['tempo']:.1f} BPM
- Number of Samples: {features['samples']:,}
**Feature Shapes:**
- MFCC: {features['mfcc'].shape}
- Spectral Centroid: {features['spectral_centroid'].shape}
- Spectral Rolloff: {features['spectral_rolloff'].shape}
- Zero Crossing Rate: {features['zero_crossing_rate'].shape}
"""
progress(1.0, desc="Analysis complete!")
return plot_path, summary, None
except Exception as e:
logger.error(f"Error processing audio: {str(e)}")
return None, None, f"Error processing audio: {str(e)}"
def extract_chroma_features(self, audio_path: str, sr: int = 16000, max_duration: float = 30.0,
progress=gr.Progress()) -> Tuple[Optional[str], Optional[str], Optional[str]]:
"""Extract and visualize enhanced chroma features."""
if not audio_path or not Path(audio_path).exists():
return None, None, "Invalid or missing audio file"
try:
progress(0.1, desc="Loading audio...")
y, sr = librosa.load(audio_path, sr=sr)
if len(y) > sr * max_duration:
y = y[:int(sr * max_duration)]
progress(0.3, desc="Computing chroma variants...")
chroma_orig = librosa.feature.chroma_cqt(y=y, sr=sr)
y_harm = librosa.effects.harmonic(y=y, margin=8)
chroma_harm = librosa.feature.chroma_cqt(y=y_harm, sr=sr)
chroma_filter = np.minimum(chroma_harm,
librosa.decompose.nn_filter(chroma_harm,
aggregate=np.median,
metric='cosine'))
chroma_smooth = scipy.ndimage.median_filter(chroma_filter, size=(1, 9))
chroma_stft = librosa.feature.chroma_stft(y=y, sr=sr)
chroma_cens = librosa.feature.chroma_cens(y=y, sr=sr)
progress(0.8, desc="Creating visualizations...")
fig, axes = plt.subplots(3, 2, figsize=(15, 12))
axes = axes.flatten()
for i, (chroma, title) in enumerate([
(chroma_orig, 'Original Chroma (CQT)'),
(chroma_harm, 'Harmonic Chroma'),
(chroma_filter, 'Non-local Filtered'),
(chroma_smooth, 'Median Filtered'),
(chroma_stft, 'Chroma (STFT)'),
(chroma_cens, 'CENS Features')
]):
librosa.display.specshow(chroma, y_axis='chroma', x_axis='time', ax=axes[i])
axes[i].set_title(title)
plt.tight_layout()
plot_path = self.save_plot(fig, "chroma_features")
if not plot_path:
return None, None, "Failed to save chroma visualizations"
summary = "Chroma feature analysis complete! Visualizations show different chroma extraction methods for harmonic analysis."
progress(1.0, desc="Chroma analysis complete!")
return plot_path, summary, None
except Exception as e:
logger.error(f"Error processing chroma features: {str(e)}")
return None, None, f"Error processing chroma features: {str(e)}"
def generate_patches(self, audio_path: str, sr: int = 16000, patch_duration: float = 5.0,
hop_duration: float = 1.0, progress=gr.Progress()) -> Tuple[Optional[str], Optional[str], Optional[str]]:
"""Generate fixed-duration patches for transformer input."""
if not audio_path or not Path(audio_path).exists():
return None, None, "Invalid or missing audio file"
try:
progress(0.1, desc="Loading audio...")
y, sr = librosa.load(audio_path, sr=sr)
progress(0.3, desc="Computing mel spectrogram...")
hop_length = 512
S_mel = librosa.feature.melspectrogram(y=y, sr=sr, hop_length=hop_length, n_mels=80)
S_dB = librosa.power_to_db(S_mel, ref=np.max)
progress(0.5, desc="Generating patches...")
patch_frames = librosa.time_to_frames(patch_duration, sr=sr, hop_length=hop_length)
hop_frames = librosa.time_to_frames(hop_duration, sr=sr, hop_length=hop_length)
patches = librosa.util.frame(S_dB, frame_length=patch_frames, hop_length=hop_frames)
progress(0.8, desc="Creating visualizations...")
num_patches_to_show = min(6, patches.shape[-1])
fig, axes = plt.subplots(2, 3, figsize=(18, 8))
axes = axes.flatten()
for i in range(num_patches_to_show):
librosa.display.specshow(patches[..., i], y_axis='mel', x_axis='time',
ax=axes[i], sr=sr, hop_length=hop_length)
axes[i].set_title(f'Patch {i+1}')
for i in range(num_patches_to_show, len(axes)):
axes[i].set_visible(False)
plt.tight_layout()
plot_path = self.save_plot(fig, "patches")
if not plot_path:
return None, None, "Failed to save patch visualizations"
summary = f"""
**Patch Generation Summary:**
- Total patches generated: {patches.shape[-1]}
- Patch duration: {patch_duration:.1f} seconds
- Hop duration: {hop_duration:.1f} seconds
- Patch shape (mels, time, patches): {patches.shape}
- Each patch covers {patch_frames} time frames
"""
progress(1.0, desc="Patch generation complete!")
return plot_path, summary, None
except Exception as e:
logger.error(f"Error generating patches: {str(e)}")
return None, None, f"Error generating patches: {str(e)}"
def create_gradio_interface() -> gr.Blocks:
"""Create a modular Gradio interface for audio analysis."""
analyzer = AudioAnalyzer()
with gr.Blocks(title="π΅ Audio Analysis Suite", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π΅ Audio Analysis Suite
Analyze audio from YouTube videos or uploaded files. Extract features or generate transformer patches for deep learning applications.
**Features:**
- π **Basic Features**: Waveform, Mel Spectrogram, MFCC, Spectral Analysis, Tempo Detection
- πΌ **Chroma Features**: Harmonic content analysis with multiple extraction methods
- π§© **Transformer Patches**: Fixed-duration patches for deep learning
**Requirements**: Dependencies are automatically installed in Hugging Face Spaces via `requirements.txt`.
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### π Audio Input")
with gr.Group():
gr.Markdown("**Download from YouTube** (Supported formats: MP3, WAV, etc.)")
youtube_url = gr.Textbox(
label="YouTube URL",
placeholder="https://www.youtube.com/watch?v=...",
)
download_btn = gr.Button("π₯ Download Audio", variant="primary")
download_status = gr.Textbox(label="Download Status", interactive=False)
with gr.Group():
gr.Markdown("**Or upload audio file** (Supported formats: MP3, WAV, FLAC, etc.)")
audio_file = gr.Audio(
label="Upload Audio File",
type="filepath",
)
with gr.Column(scale=2):
gr.Markdown("### π Analysis Results")
with gr.Tabs():
with gr.Tab("π Basic Features"):
basic_plot = gr.Image(label="Feature Visualizations")
basic_summary = gr.Markdown(label="Feature Summary")
basic_btn = gr.Button("π Analyze Basic Features", variant="secondary")
with gr.Tab("πΌ Chroma Features"):
chroma_plot = gr.Image(label="Chroma Visualizations")
chroma_summary = gr.Markdown(label="Chroma Summary")
chroma_btn = gr.Button("πΌ Analyze Chroma Features", variant="secondary")
with gr.Tab("π§© Transformer Patches"):
with gr.Row():
patch_duration = gr.Slider(
label="Patch Duration (seconds)",
minimum=1.0, maximum=10.0, value=5.0, step=0.5,
)
hop_duration = gr.Slider(
label="Hop Duration (seconds)",
minimum=0.1, maximum=5.0, value=1.0, step=0.1,
)
patches_plot = gr.Image(label="Generated Patches")
patches_summary = gr.Markdown(label="Patch Summary")
patches_btn = gr.Button("π§© Generate Patches", variant="secondary")
error_output = gr.Textbox(label="Error Messages", interactive=False)
gr.Markdown("""
### βΉοΈ Usage Tips
- **Processing Limits**: 60s for basic features, 30s for chroma features for fast response
- **YouTube Downloads**: Ensure URLs are valid and respect YouTube's terms of service
- **Visualizations**: High-quality, suitable for research and education
- **Storage**: Temporary files are cleaned up when the interface closes
- **Support**: For issues, check the [GitHub repository](https://github.com/your-repo)
""")
# Event handlers
download_btn.click(
fn=analyzer.download_youtube_audio,
inputs=[youtube_url],
outputs=[audio_file, download_status]
)
basic_btn.click(
fn=analyzer.extract_basic_features,
inputs=[audio_file],
outputs=[basic_plot, basic_summary, error_output]
)
chroma_btn.click(
fn=analyzer.extract_chroma_features,
inputs=[audio_file],
outputs=[chroma_plot, chroma_summary, error_output]
)
patches_btn.click(
fn=analyzer.generate_patches,
inputs=[audio_file, patch_duration, hop_duration],
outputs=[patches_plot, patches_summary, error_output]
)
audio_file.change(
fn=analyzer.extract_basic_features,
inputs=[audio_file],
outputs=[basic_plot, basic_summary, error_output]
)
demo.unload(fn=analyzer.cleanup)
return demo
if __name__ == "__main__":
demo = create_gradio_interface()
demo.launch() |