File size: 18,077 Bytes
b98e447
6310c31
 
 
ce13058
6310c31
 
ce13058
6310c31
 
 
 
 
 
 
 
1902030
6310c31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b98e447
6310c31
 
 
 
 
 
 
 
b98e447
6310c31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1902030
 
 
 
 
6310c31
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
import gradio as gr
import subprocess
import os
import tempfile
import librosa
import librosa.display
import matplotlib.pyplot as plt
import numpy as np
import scipy.ndimage
from pathlib import Path

import logging
import warnings



import shutil
from typing import Tuple, Optional, Dict, Any

# Configure matplotlib for web display
plt.switch_backend('Agg')
warnings.filterwarnings('ignore')

# Setup logging
logging.basicConfig(
    level=logging.INFO,
    format="%(asctime)s - %(levelname)s - %(message)s",
    handlers=[logging.StreamHandler()]
)
logger = logging.getLogger(__name__)

class AudioAnalyzer:
    """Core class for audio analysis with modular feature extraction methods."""

    def __init__(self, temp_dir: Optional[str] = None):
        """Initialize with a temporary directory for file storage."""
        self.temp_dir = Path(temp_dir or tempfile.mkdtemp())
        self.temp_dir.mkdir(exist_ok=True)
        self.plot_files = []  # Track plot files for cleanup
        logger.info(f"Initialized temporary directory: {self.temp_dir}")

    def cleanup(self) -> None:
        """Remove temporary directory and plot files."""
        for plot_file in self.plot_files:
            if Path(plot_file).exists():
                try:
                    Path(plot_file).unlink()
                    logger.info(f"Removed plot file: {plot_file}")
                except Exception as e:
                    logger.warning(f"Failed to remove plot file {plot_file}: {str(e)}")
        if self.temp_dir.exists():
            shutil.rmtree(self.temp_dir, ignore_errors=True)
            logger.info(f"Cleaned up temporary directory: {self.temp_dir}")

    def download_youtube_audio(self, video_url: str, progress=gr.Progress()) -> Tuple[Optional[str], str]:
        """Download audio from YouTube using yt-dlp."""
        if not video_url:
            return None, "Please provide a valid YouTube URL"

        progress(0.1, desc="Initializing download...")
        output_dir = self.temp_dir / "downloaded_audio"
        output_dir.mkdir(exist_ok=True)
        output_file = output_dir / "audio.mp3"

        command = [
            "yt-dlp",
            "-x",
            "--audio-format", "mp3",
            "-o", str(output_file),
            "--no-playlist",
            "--restrict-filenames",
            video_url
        ]

        try:
            progress(0.3, desc="Downloading audio...")
            subprocess.run(command, check=True, capture_output=True, text=True)
            progress(1.0, desc="Download complete!")
            return str(output_file), f"Successfully downloaded audio: {output_file.name}"
        except FileNotFoundError:
            return None, "yt-dlp not found. Install it with: pip install yt-dlp"
        except subprocess.CalledProcessError as e:
            return None, f"Download failed: {e.stderr}"
        except Exception as e:
            logger.error(f"Unexpected error during download: {str(e)}")
            return None, f"Error: {str(e)}"

    def save_plot(self, fig, filename: str) -> Optional[str]:
        """Save matplotlib figure to a temporary file and verify existence."""
        try:
            # Use NamedTemporaryFile to ensure persistence
            with tempfile.NamedTemporaryFile(suffix='.png', delete=False, dir=self.temp_dir) as tmp_file:
                plot_path = tmp_file.name
            fig.savefig(plot_path, dpi=300, bbox_inches='tight', format='png')
            plt.close(fig)
            if not Path(plot_path).exists():
                logger.error(f"Plot file not created: {plot_path}")
                return None
            self.plot_files.append(plot_path)
            logger.info(f"Saved plot: {plot_path}")
            return str(plot_path)
        except Exception as e:
            logger.error(f"Error saving plot {filename}: {str(e)}")
            plt.close(fig)
            return None

    def extract_basic_features(self, audio_path: str, sr: int = 16000, max_duration: float = 60.0, 
                             progress=gr.Progress()) -> Tuple[Optional[str], Optional[str], Optional[str]]:
        """Extract basic audio features and generate visualizations."""
        if not audio_path or not Path(audio_path).exists():
            return None, None, "Invalid or missing audio file"

        try:
            progress(0.1, desc="Loading audio...")
            y, sr = librosa.load(audio_path, sr=sr)
            duration = librosa.get_duration(y=y, sr=sr)

            if duration > max_duration:
                y = y[:int(sr * max_duration)]
                duration = max_duration

            progress(0.3, desc="Computing features...")
            features: Dict[str, Any] = {
                'duration': duration,
                'sample_rate': sr,
                'samples': len(y),
                'tempo': float(librosa.beat.beat_track(y=y, sr=sr)[0]),  # Convert to float
                'mfcc': librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13),
                'spectral_centroid': librosa.feature.spectral_centroid(y=y, sr=sr)[0],
                'spectral_rolloff': librosa.feature.spectral_rolloff(y=y, sr=sr)[0],
                'zero_crossing_rate': librosa.feature.zero_crossing_rate(y)[0]
            }

            progress(0.5, desc="Computing mel spectrogram...")
            hop_length = 512
            S_mel = librosa.feature.melspectrogram(y=y, sr=sr, hop_length=hop_length, n_mels=80)
            S_dB = librosa.power_to_db(S_mel, ref=np.max)

            progress(0.8, desc="Creating visualizations...")
            fig, axes = plt.subplots(2, 2, figsize=(15, 10))

            time_axis = np.linspace(0, duration, len(y))
            axes[0, 0].plot(time_axis, y)
            axes[0, 0].set_title('Waveform')
            axes[0, 0].set_xlabel('Time (s)')
            axes[0, 0].set_ylabel('Amplitude')

            librosa.display.specshow(S_dB, sr=sr, hop_length=hop_length, 
                                    x_axis='time', y_axis='mel', ax=axes[0, 1])
            axes[0, 1].set_title('Mel Spectrogram')

            librosa.display.specshow(features['mfcc'], sr=sr, x_axis='time', ax=axes[1, 0])
            axes[1, 0].set_title('MFCC')

            times = librosa.frames_to_time(range(len(features['spectral_centroid'])), sr=sr, hop_length=hop_length)
            axes[1, 1].plot(times, features['spectral_centroid'], label='Spectral Centroid')
            axes[1, 1].plot(times, features['spectral_rolloff'], label='Spectral Rolloff')
            axes[1, 1].set_title('Spectral Features')
            axes[1, 1].set_xlabel('Time (s)')
            axes[1, 1].legend()

            plt.tight_layout()
            plot_path = self.save_plot(fig, "basic_features")
            if not plot_path:
                return None, None, "Failed to save feature visualizations"

            # Validate feature shapes
            for key in ['mfcc', 'spectral_centroid', 'spectral_rolloff', 'zero_crossing_rate']:
                if not isinstance(features[key].shape, tuple):
                    logger.error(f"Invalid shape for {key}: {features[key].shape}")
                    return None, None, f"Invalid feature shape for {key}"

            summary = f"""
**Audio Summary:**
- Duration: {duration:.2f} seconds
- Sample Rate: {sr} Hz
- Estimated Tempo: {features['tempo']:.1f} BPM
- Number of Samples: {features['samples']:,}

**Feature Shapes:**
- MFCC: {features['mfcc'].shape}
- Spectral Centroid: {features['spectral_centroid'].shape}
- Spectral Rolloff: {features['spectral_rolloff'].shape}
- Zero Crossing Rate: {features['zero_crossing_rate'].shape}
            """

            progress(1.0, desc="Analysis complete!")
            return plot_path, summary, None

        except Exception as e:
            logger.error(f"Error processing audio: {str(e)}")
            return None, None, f"Error processing audio: {str(e)}"

    def extract_chroma_features(self, audio_path: str, sr: int = 16000, max_duration: float = 30.0, 
                              progress=gr.Progress()) -> Tuple[Optional[str], Optional[str], Optional[str]]:
        """Extract and visualize enhanced chroma features."""
        if not audio_path or not Path(audio_path).exists():
            return None, None, "Invalid or missing audio file"

        try:
            progress(0.1, desc="Loading audio...")
            y, sr = librosa.load(audio_path, sr=sr)
            if len(y) > sr * max_duration:
                y = y[:int(sr * max_duration)]

            progress(0.3, desc="Computing chroma variants...")
            chroma_orig = librosa.feature.chroma_cqt(y=y, sr=sr)
            y_harm = librosa.effects.harmonic(y=y, margin=8)
            chroma_harm = librosa.feature.chroma_cqt(y=y_harm, sr=sr)
            chroma_filter = np.minimum(chroma_harm,
                                     librosa.decompose.nn_filter(chroma_harm,
                                                                aggregate=np.median,
                                                                metric='cosine'))
            chroma_smooth = scipy.ndimage.median_filter(chroma_filter, size=(1, 9))
            chroma_stft = librosa.feature.chroma_stft(y=y, sr=sr)
            chroma_cens = librosa.feature.chroma_cens(y=y, sr=sr)

            progress(0.8, desc="Creating visualizations...")
            fig, axes = plt.subplots(3, 2, figsize=(15, 12))
            axes = axes.flatten()

            for i, (chroma, title) in enumerate([
                (chroma_orig, 'Original Chroma (CQT)'),
                (chroma_harm, 'Harmonic Chroma'),
                (chroma_filter, 'Non-local Filtered'),
                (chroma_smooth, 'Median Filtered'),
                (chroma_stft, 'Chroma (STFT)'),
                (chroma_cens, 'CENS Features')
            ]):
                librosa.display.specshow(chroma, y_axis='chroma', x_axis='time', ax=axes[i])
                axes[i].set_title(title)

            plt.tight_layout()
            plot_path = self.save_plot(fig, "chroma_features")
            if not plot_path:
                return None, None, "Failed to save chroma visualizations"

            summary = "Chroma feature analysis complete! Visualizations show different chroma extraction methods for harmonic analysis."
            progress(1.0, desc="Chroma analysis complete!")
            return plot_path, summary, None

        except Exception as e:
            logger.error(f"Error processing chroma features: {str(e)}")
            return None, None, f"Error processing chroma features: {str(e)}"

    def generate_patches(self, audio_path: str, sr: int = 16000, patch_duration: float = 5.0, 
                        hop_duration: float = 1.0, progress=gr.Progress()) -> Tuple[Optional[str], Optional[str], Optional[str]]:
        """Generate fixed-duration patches for transformer input."""
        if not audio_path or not Path(audio_path).exists():
            return None, None, "Invalid or missing audio file"

        try:
            progress(0.1, desc="Loading audio...")
            y, sr = librosa.load(audio_path, sr=sr)

            progress(0.3, desc="Computing mel spectrogram...")
            hop_length = 512
            S_mel = librosa.feature.melspectrogram(y=y, sr=sr, hop_length=hop_length, n_mels=80)
            S_dB = librosa.power_to_db(S_mel, ref=np.max)

            progress(0.5, desc="Generating patches...")
            patch_frames = librosa.time_to_frames(patch_duration, sr=sr, hop_length=hop_length)
            hop_frames = librosa.time_to_frames(hop_duration, sr=sr, hop_length=hop_length)
            patches = librosa.util.frame(S_dB, frame_length=patch_frames, hop_length=hop_frames)

            progress(0.8, desc="Creating visualizations...")
            num_patches_to_show = min(6, patches.shape[-1])
            fig, axes = plt.subplots(2, 3, figsize=(18, 8))
            axes = axes.flatten()

            for i in range(num_patches_to_show):
                librosa.display.specshow(patches[..., i], y_axis='mel', x_axis='time', 
                                       ax=axes[i], sr=sr, hop_length=hop_length)
                axes[i].set_title(f'Patch {i+1}')

            for i in range(num_patches_to_show, len(axes)):
                axes[i].set_visible(False)

            plt.tight_layout()
            plot_path = self.save_plot(fig, "patches")
            if not plot_path:
                return None, None, "Failed to save patch visualizations"

            summary = f"""
**Patch Generation Summary:**
- Total patches generated: {patches.shape[-1]}
- Patch duration: {patch_duration:.1f} seconds
- Hop duration: {hop_duration:.1f} seconds
- Patch shape (mels, time, patches): {patches.shape}
- Each patch covers {patch_frames} time frames
            """

            progress(1.0, desc="Patch generation complete!")
            return plot_path, summary, None

        except Exception as e:
            logger.error(f"Error generating patches: {str(e)}")
            return None, None, f"Error generating patches: {str(e)}"

def create_gradio_interface() -> gr.Blocks:
    """Create a modular Gradio interface for audio analysis."""
    analyzer = AudioAnalyzer()

    with gr.Blocks(title="🎡 Audio Analysis Suite", theme=gr.themes.Soft()) as demo:
        gr.Markdown("""
        # 🎡 Audio Analysis Suite

        Analyze audio from YouTube videos or uploaded files. Extract features or generate transformer patches for deep learning applications.

        **Features:**
        - πŸ“Š **Basic Features**: Waveform, Mel Spectrogram, MFCC, Spectral Analysis, Tempo Detection
        - 🎼 **Chroma Features**: Harmonic content analysis with multiple extraction methods
        - 🧩 **Transformer Patches**: Fixed-duration patches for deep learning

        **Requirements**: Dependencies are automatically installed in Hugging Face Spaces via `requirements.txt`.
        """)

        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown("### πŸ“ Audio Input")
                with gr.Group():
                    gr.Markdown("**Download from YouTube** (Supported formats: MP3, WAV, etc.)")
                    youtube_url = gr.Textbox(
                        label="YouTube URL",
                        placeholder="https://www.youtube.com/watch?v=...",
                    )
                    download_btn = gr.Button("πŸ“₯ Download Audio", variant="primary")
                    download_status = gr.Textbox(label="Download Status", interactive=False)

                with gr.Group():
                    gr.Markdown("**Or upload audio file** (Supported formats: MP3, WAV, FLAC, etc.)")
                    audio_file = gr.Audio(
                        label="Upload Audio File",
                        type="filepath",
                    )

            with gr.Column(scale=2):
                gr.Markdown("### πŸ” Analysis Results")
                with gr.Tabs():
                    with gr.Tab("πŸ“Š Basic Features"):
                        basic_plot = gr.Image(label="Feature Visualizations")
                        basic_summary = gr.Markdown(label="Feature Summary")
                        basic_btn = gr.Button("πŸ” Analyze Basic Features", variant="secondary")

                    with gr.Tab("🎼 Chroma Features"):
                        chroma_plot = gr.Image(label="Chroma Visualizations")
                        chroma_summary = gr.Markdown(label="Chroma Summary")
                        chroma_btn = gr.Button("🎼 Analyze Chroma Features", variant="secondary")

                    with gr.Tab("🧩 Transformer Patches"):
                        with gr.Row():
                            patch_duration = gr.Slider(
                                label="Patch Duration (seconds)",
                                minimum=1.0, maximum=10.0, value=5.0, step=0.5,
                            )
                            hop_duration = gr.Slider(
                                label="Hop Duration (seconds)",
                                minimum=0.1, maximum=5.0, value=1.0, step=0.1,
                            )
                        patches_plot = gr.Image(label="Generated Patches")
                        patches_summary = gr.Markdown(label="Patch Summary")
                        patches_btn = gr.Button("🧩 Generate Patches", variant="secondary")

                error_output = gr.Textbox(label="Error Messages", interactive=False)

        gr.Markdown("""
        ### ℹ️ Usage Tips
        - **Processing Limits**: 60s for basic features, 30s for chroma features for fast response
        - **YouTube Downloads**: Ensure URLs are valid and respect YouTube's terms of service
        - **Visualizations**: High-quality, suitable for research and education
        - **Storage**: Temporary files are cleaned up when the interface closes
        - **Support**: For issues, check the [GitHub repository](https://github.com/your-repo)
        """)

        # Event handlers
        download_btn.click(
            fn=analyzer.download_youtube_audio,
            inputs=[youtube_url],
            outputs=[audio_file, download_status]
        )

        basic_btn.click(
            fn=analyzer.extract_basic_features,
            inputs=[audio_file],
            outputs=[basic_plot, basic_summary, error_output]
        )

        chroma_btn.click(
            fn=analyzer.extract_chroma_features,
            inputs=[audio_file],
            outputs=[chroma_plot, chroma_summary, error_output]
        )

        patches_btn.click(
            fn=analyzer.generate_patches,
            inputs=[audio_file, patch_duration, hop_duration],
            outputs=[patches_plot, patches_summary, error_output]
        )

        audio_file.change(
            fn=analyzer.extract_basic_features,
            inputs=[audio_file],
            outputs=[basic_plot, basic_summary, error_output]
        )

        demo.unload(fn=analyzer.cleanup)


















    return demo


























if __name__ == "__main__":
    demo = create_gradio_interface()
    demo.launch()