|
import gradio as gr |
|
import subprocess |
|
import os |
|
import tempfile |
|
import librosa |
|
import librosa.display |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
import scipy.ndimage |
|
from pathlib import Path |
|
|
|
import logging |
|
import warnings |
|
|
|
|
|
|
|
import shutil |
|
from typing import Tuple, Optional, Dict, Any |
|
|
|
|
|
plt.switch_backend('Agg') |
|
warnings.filterwarnings('ignore') |
|
|
|
|
|
logging.basicConfig( |
|
level=logging.INFO, |
|
format="%(asctime)s - %(levelname)s - %(message)s", |
|
handlers=[logging.StreamHandler()] |
|
) |
|
logger = logging.getLogger(__name__) |
|
|
|
class AudioAnalyzer: |
|
"""Core class for audio analysis with modular feature extraction methods.""" |
|
|
|
def __init__(self, temp_dir: Optional[str] = None): |
|
"""Initialize with a temporary directory for file storage.""" |
|
self.temp_dir = Path(temp_dir or tempfile.mkdtemp()) |
|
self.temp_dir.mkdir(exist_ok=True) |
|
self.plot_files = [] |
|
logger.info(f"Initialized temporary directory: {self.temp_dir}") |
|
|
|
def cleanup(self) -> None: |
|
"""Remove temporary directory and plot files.""" |
|
for plot_file in self.plot_files: |
|
if Path(plot_file).exists(): |
|
try: |
|
Path(plot_file).unlink() |
|
logger.info(f"Removed plot file: {plot_file}") |
|
except Exception as e: |
|
logger.warning(f"Failed to remove plot file {plot_file}: {str(e)}") |
|
if self.temp_dir.exists(): |
|
shutil.rmtree(self.temp_dir, ignore_errors=True) |
|
logger.info(f"Cleaned up temporary directory: {self.temp_dir}") |
|
|
|
def download_youtube_audio(self, video_url: str, progress=gr.Progress()) -> Tuple[Optional[str], str]: |
|
"""Download audio from YouTube using yt-dlp.""" |
|
if not video_url: |
|
return None, "Please provide a valid YouTube URL" |
|
|
|
progress(0.1, desc="Initializing download...") |
|
output_dir = self.temp_dir / "downloaded_audio" |
|
output_dir.mkdir(exist_ok=True) |
|
output_file = output_dir / "audio.mp3" |
|
|
|
command = [ |
|
"yt-dlp", |
|
"-x", |
|
"--audio-format", "mp3", |
|
"-o", str(output_file), |
|
"--no-playlist", |
|
"--restrict-filenames", |
|
video_url |
|
] |
|
|
|
try: |
|
progress(0.3, desc="Downloading audio...") |
|
subprocess.run(command, check=True, capture_output=True, text=True) |
|
progress(1.0, desc="Download complete!") |
|
return str(output_file), f"Successfully downloaded audio: {output_file.name}" |
|
except FileNotFoundError: |
|
return None, "yt-dlp not found. Install it with: pip install yt-dlp" |
|
except subprocess.CalledProcessError as e: |
|
return None, f"Download failed: {e.stderr}" |
|
except Exception as e: |
|
logger.error(f"Unexpected error during download: {str(e)}") |
|
return None, f"Error: {str(e)}" |
|
|
|
def save_plot(self, fig, filename: str) -> Optional[str]: |
|
"""Save matplotlib figure to a temporary file and verify existence.""" |
|
try: |
|
|
|
with tempfile.NamedTemporaryFile(suffix='.png', delete=False, dir=self.temp_dir) as tmp_file: |
|
plot_path = tmp_file.name |
|
fig.savefig(plot_path, dpi=300, bbox_inches='tight', format='png') |
|
plt.close(fig) |
|
if not Path(plot_path).exists(): |
|
logger.error(f"Plot file not created: {plot_path}") |
|
return None |
|
self.plot_files.append(plot_path) |
|
logger.info(f"Saved plot: {plot_path}") |
|
return str(plot_path) |
|
except Exception as e: |
|
logger.error(f"Error saving plot {filename}: {str(e)}") |
|
plt.close(fig) |
|
return None |
|
|
|
def extract_basic_features(self, audio_path: str, sr: int = 16000, max_duration: float = 60.0, |
|
progress=gr.Progress()) -> Tuple[Optional[str], Optional[str], Optional[str]]: |
|
"""Extract basic audio features and generate visualizations.""" |
|
if not audio_path or not Path(audio_path).exists(): |
|
return None, None, "Invalid or missing audio file" |
|
|
|
try: |
|
progress(0.1, desc="Loading audio...") |
|
y, sr = librosa.load(audio_path, sr=sr) |
|
duration = librosa.get_duration(y=y, sr=sr) |
|
|
|
if duration > max_duration: |
|
y = y[:int(sr * max_duration)] |
|
duration = max_duration |
|
|
|
progress(0.3, desc="Computing features...") |
|
features: Dict[str, Any] = { |
|
'duration': duration, |
|
'sample_rate': sr, |
|
'samples': len(y), |
|
'tempo': float(librosa.beat.beat_track(y=y, sr=sr)[0]), |
|
'mfcc': librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13), |
|
'spectral_centroid': librosa.feature.spectral_centroid(y=y, sr=sr)[0], |
|
'spectral_rolloff': librosa.feature.spectral_rolloff(y=y, sr=sr)[0], |
|
'zero_crossing_rate': librosa.feature.zero_crossing_rate(y)[0] |
|
} |
|
|
|
progress(0.5, desc="Computing mel spectrogram...") |
|
hop_length = 512 |
|
S_mel = librosa.feature.melspectrogram(y=y, sr=sr, hop_length=hop_length, n_mels=80) |
|
S_dB = librosa.power_to_db(S_mel, ref=np.max) |
|
|
|
progress(0.8, desc="Creating visualizations...") |
|
fig, axes = plt.subplots(2, 2, figsize=(15, 10)) |
|
|
|
time_axis = np.linspace(0, duration, len(y)) |
|
axes[0, 0].plot(time_axis, y) |
|
axes[0, 0].set_title('Waveform') |
|
axes[0, 0].set_xlabel('Time (s)') |
|
axes[0, 0].set_ylabel('Amplitude') |
|
|
|
librosa.display.specshow(S_dB, sr=sr, hop_length=hop_length, |
|
x_axis='time', y_axis='mel', ax=axes[0, 1]) |
|
axes[0, 1].set_title('Mel Spectrogram') |
|
|
|
librosa.display.specshow(features['mfcc'], sr=sr, x_axis='time', ax=axes[1, 0]) |
|
axes[1, 0].set_title('MFCC') |
|
|
|
times = librosa.frames_to_time(range(len(features['spectral_centroid'])), sr=sr, hop_length=hop_length) |
|
axes[1, 1].plot(times, features['spectral_centroid'], label='Spectral Centroid') |
|
axes[1, 1].plot(times, features['spectral_rolloff'], label='Spectral Rolloff') |
|
axes[1, 1].set_title('Spectral Features') |
|
axes[1, 1].set_xlabel('Time (s)') |
|
axes[1, 1].legend() |
|
|
|
plt.tight_layout() |
|
plot_path = self.save_plot(fig, "basic_features") |
|
if not plot_path: |
|
return None, None, "Failed to save feature visualizations" |
|
|
|
|
|
for key in ['mfcc', 'spectral_centroid', 'spectral_rolloff', 'zero_crossing_rate']: |
|
if not isinstance(features[key].shape, tuple): |
|
logger.error(f"Invalid shape for {key}: {features[key].shape}") |
|
return None, None, f"Invalid feature shape for {key}" |
|
|
|
summary = f""" |
|
**Audio Summary:** |
|
- Duration: {duration:.2f} seconds |
|
- Sample Rate: {sr} Hz |
|
- Estimated Tempo: {features['tempo']:.1f} BPM |
|
- Number of Samples: {features['samples']:,} |
|
|
|
**Feature Shapes:** |
|
- MFCC: {features['mfcc'].shape} |
|
- Spectral Centroid: {features['spectral_centroid'].shape} |
|
- Spectral Rolloff: {features['spectral_rolloff'].shape} |
|
- Zero Crossing Rate: {features['zero_crossing_rate'].shape} |
|
""" |
|
|
|
progress(1.0, desc="Analysis complete!") |
|
return plot_path, summary, None |
|
|
|
except Exception as e: |
|
logger.error(f"Error processing audio: {str(e)}") |
|
return None, None, f"Error processing audio: {str(e)}" |
|
|
|
def extract_chroma_features(self, audio_path: str, sr: int = 16000, max_duration: float = 30.0, |
|
progress=gr.Progress()) -> Tuple[Optional[str], Optional[str], Optional[str]]: |
|
"""Extract and visualize enhanced chroma features.""" |
|
if not audio_path or not Path(audio_path).exists(): |
|
return None, None, "Invalid or missing audio file" |
|
|
|
try: |
|
progress(0.1, desc="Loading audio...") |
|
y, sr = librosa.load(audio_path, sr=sr) |
|
if len(y) > sr * max_duration: |
|
y = y[:int(sr * max_duration)] |
|
|
|
progress(0.3, desc="Computing chroma variants...") |
|
chroma_orig = librosa.feature.chroma_cqt(y=y, sr=sr) |
|
y_harm = librosa.effects.harmonic(y=y, margin=8) |
|
chroma_harm = librosa.feature.chroma_cqt(y=y_harm, sr=sr) |
|
chroma_filter = np.minimum(chroma_harm, |
|
librosa.decompose.nn_filter(chroma_harm, |
|
aggregate=np.median, |
|
metric='cosine')) |
|
chroma_smooth = scipy.ndimage.median_filter(chroma_filter, size=(1, 9)) |
|
chroma_stft = librosa.feature.chroma_stft(y=y, sr=sr) |
|
chroma_cens = librosa.feature.chroma_cens(y=y, sr=sr) |
|
|
|
progress(0.8, desc="Creating visualizations...") |
|
fig, axes = plt.subplots(3, 2, figsize=(15, 12)) |
|
axes = axes.flatten() |
|
|
|
for i, (chroma, title) in enumerate([ |
|
(chroma_orig, 'Original Chroma (CQT)'), |
|
(chroma_harm, 'Harmonic Chroma'), |
|
(chroma_filter, 'Non-local Filtered'), |
|
(chroma_smooth, 'Median Filtered'), |
|
(chroma_stft, 'Chroma (STFT)'), |
|
(chroma_cens, 'CENS Features') |
|
]): |
|
librosa.display.specshow(chroma, y_axis='chroma', x_axis='time', ax=axes[i]) |
|
axes[i].set_title(title) |
|
|
|
plt.tight_layout() |
|
plot_path = self.save_plot(fig, "chroma_features") |
|
if not plot_path: |
|
return None, None, "Failed to save chroma visualizations" |
|
|
|
summary = "Chroma feature analysis complete! Visualizations show different chroma extraction methods for harmonic analysis." |
|
progress(1.0, desc="Chroma analysis complete!") |
|
return plot_path, summary, None |
|
|
|
except Exception as e: |
|
logger.error(f"Error processing chroma features: {str(e)}") |
|
return None, None, f"Error processing chroma features: {str(e)}" |
|
|
|
def generate_patches(self, audio_path: str, sr: int = 16000, patch_duration: float = 5.0, |
|
hop_duration: float = 1.0, progress=gr.Progress()) -> Tuple[Optional[str], Optional[str], Optional[str]]: |
|
"""Generate fixed-duration patches for transformer input.""" |
|
if not audio_path or not Path(audio_path).exists(): |
|
return None, None, "Invalid or missing audio file" |
|
|
|
try: |
|
progress(0.1, desc="Loading audio...") |
|
y, sr = librosa.load(audio_path, sr=sr) |
|
|
|
progress(0.3, desc="Computing mel spectrogram...") |
|
hop_length = 512 |
|
S_mel = librosa.feature.melspectrogram(y=y, sr=sr, hop_length=hop_length, n_mels=80) |
|
S_dB = librosa.power_to_db(S_mel, ref=np.max) |
|
|
|
progress(0.5, desc="Generating patches...") |
|
patch_frames = librosa.time_to_frames(patch_duration, sr=sr, hop_length=hop_length) |
|
hop_frames = librosa.time_to_frames(hop_duration, sr=sr, hop_length=hop_length) |
|
patches = librosa.util.frame(S_dB, frame_length=patch_frames, hop_length=hop_frames) |
|
|
|
progress(0.8, desc="Creating visualizations...") |
|
num_patches_to_show = min(6, patches.shape[-1]) |
|
fig, axes = plt.subplots(2, 3, figsize=(18, 8)) |
|
axes = axes.flatten() |
|
|
|
for i in range(num_patches_to_show): |
|
librosa.display.specshow(patches[..., i], y_axis='mel', x_axis='time', |
|
ax=axes[i], sr=sr, hop_length=hop_length) |
|
axes[i].set_title(f'Patch {i+1}') |
|
|
|
for i in range(num_patches_to_show, len(axes)): |
|
axes[i].set_visible(False) |
|
|
|
plt.tight_layout() |
|
plot_path = self.save_plot(fig, "patches") |
|
if not plot_path: |
|
return None, None, "Failed to save patch visualizations" |
|
|
|
summary = f""" |
|
**Patch Generation Summary:** |
|
- Total patches generated: {patches.shape[-1]} |
|
- Patch duration: {patch_duration:.1f} seconds |
|
- Hop duration: {hop_duration:.1f} seconds |
|
- Patch shape (mels, time, patches): {patches.shape} |
|
- Each patch covers {patch_frames} time frames |
|
""" |
|
|
|
progress(1.0, desc="Patch generation complete!") |
|
return plot_path, summary, None |
|
|
|
except Exception as e: |
|
logger.error(f"Error generating patches: {str(e)}") |
|
return None, None, f"Error generating patches: {str(e)}" |
|
|
|
def create_gradio_interface() -> gr.Blocks: |
|
"""Create a modular Gradio interface for audio analysis.""" |
|
analyzer = AudioAnalyzer() |
|
|
|
with gr.Blocks(title="🎵 Audio Analysis Suite", theme=gr.themes.Soft()) as demo: |
|
gr.Markdown(""" |
|
# 🎵 Audio Analysis Suite |
|
|
|
Analyze audio from YouTube videos or uploaded files. Extract features or generate transformer patches for deep learning applications. |
|
|
|
**Features:** |
|
- 📊 **Basic Features**: Waveform, Mel Spectrogram, MFCC, Spectral Analysis, Tempo Detection |
|
- 🎼 **Chroma Features**: Harmonic content analysis with multiple extraction methods |
|
- 🧩 **Transformer Patches**: Fixed-duration patches for deep learning |
|
|
|
**Requirements**: Dependencies are automatically installed in Hugging Face Spaces via `requirements.txt`. |
|
""") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
gr.Markdown("### 📁 Audio Input") |
|
with gr.Group(): |
|
gr.Markdown("**Download from YouTube** (Supported formats: MP3, WAV, etc.)") |
|
youtube_url = gr.Textbox( |
|
label="YouTube URL", |
|
placeholder="https://www.youtube.com/watch?v=...", |
|
) |
|
download_btn = gr.Button("📥 Download Audio", variant="primary") |
|
download_status = gr.Textbox(label="Download Status", interactive=False) |
|
|
|
with gr.Group(): |
|
gr.Markdown("**Or upload audio file** (Supported formats: MP3, WAV, FLAC, etc.)") |
|
audio_file = gr.Audio( |
|
label="Upload Audio File", |
|
type="filepath", |
|
) |
|
|
|
with gr.Column(scale=2): |
|
gr.Markdown("### 🔍 Analysis Results") |
|
with gr.Tabs(): |
|
with gr.Tab("📊 Basic Features"): |
|
basic_plot = gr.Image(label="Feature Visualizations") |
|
basic_summary = gr.Markdown(label="Feature Summary") |
|
basic_btn = gr.Button("🔍 Analyze Basic Features", variant="secondary") |
|
|
|
with gr.Tab("🎼 Chroma Features"): |
|
chroma_plot = gr.Image(label="Chroma Visualizations") |
|
chroma_summary = gr.Markdown(label="Chroma Summary") |
|
chroma_btn = gr.Button("🎼 Analyze Chroma Features", variant="secondary") |
|
|
|
with gr.Tab("🧩 Transformer Patches"): |
|
with gr.Row(): |
|
patch_duration = gr.Slider( |
|
label="Patch Duration (seconds)", |
|
minimum=1.0, maximum=10.0, value=5.0, step=0.5, |
|
) |
|
hop_duration = gr.Slider( |
|
label="Hop Duration (seconds)", |
|
minimum=0.1, maximum=5.0, value=1.0, step=0.1, |
|
) |
|
patches_plot = gr.Image(label="Generated Patches") |
|
patches_summary = gr.Markdown(label="Patch Summary") |
|
patches_btn = gr.Button("🧩 Generate Patches", variant="secondary") |
|
|
|
error_output = gr.Textbox(label="Error Messages", interactive=False) |
|
|
|
gr.Markdown(""" |
|
### ℹ️ Usage Tips |
|
- **Processing Limits**: 60s for basic features, 30s for chroma features for fast response |
|
- **YouTube Downloads**: Ensure URLs are valid and respect YouTube's terms of service |
|
- **Visualizations**: High-quality, suitable for research and education |
|
- **Storage**: Temporary files are cleaned up when the interface closes |
|
- **Support**: For issues, check the [GitHub repository](https://github.com/your-repo) |
|
""") |
|
|
|
|
|
download_btn.click( |
|
fn=analyzer.download_youtube_audio, |
|
inputs=[youtube_url], |
|
outputs=[audio_file, download_status] |
|
) |
|
|
|
basic_btn.click( |
|
fn=analyzer.extract_basic_features, |
|
inputs=[audio_file], |
|
outputs=[basic_plot, basic_summary, error_output] |
|
) |
|
|
|
chroma_btn.click( |
|
fn=analyzer.extract_chroma_features, |
|
inputs=[audio_file], |
|
outputs=[chroma_plot, chroma_summary, error_output] |
|
) |
|
|
|
patches_btn.click( |
|
fn=analyzer.generate_patches, |
|
inputs=[audio_file, patch_duration, hop_duration], |
|
outputs=[patches_plot, patches_summary, error_output] |
|
) |
|
|
|
audio_file.change( |
|
fn=analyzer.extract_basic_features, |
|
inputs=[audio_file], |
|
outputs=[basic_plot, basic_summary, error_output] |
|
) |
|
|
|
demo.unload(fn=analyzer.cleanup) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return demo |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
demo = create_gradio_interface() |
|
demo.launch() |