Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
import PyPDF2 | |
import torch | |
import os | |
st.set_page_config(page_title="Perplexity-style Q&A (Mistral Auth)", layout="wide") | |
st.title("🧠 AI Study Assistant using Mistral 7B (Authenticated)") | |
# ✅ Load Hugging Face token from secrets | |
hf_token = os.getenv("HF_TOKEN") | |
def load_model(): | |
tokenizer = AutoTokenizer.from_pretrained( | |
"mistralai/Mistral-7B-Instruct-v0.1", | |
token=hf_token | |
) | |
model = AutoModelForCausalLM.from_pretrained( | |
"mistralai/Mistral-7B-Instruct-v0.1", | |
torch_dtype=torch.float16, | |
device_map="auto", | |
token=hf_token | |
) | |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512) | |
return pipe | |
textgen = load_model() | |
def extract_text_from_pdf(file): | |
reader = PyPDF2.PdfReader(file) | |
return "\n".join([p.extract_text() for p in reader.pages if p.extract_text()]) | |
query = st.text_input("Ask a question or enter a topic:") | |
uploaded_file = st.file_uploader("Or upload a PDF to use as context:", type=["pdf"]) | |
context = "" | |
if uploaded_file: | |
context = extract_text_from_pdf(uploaded_file) | |
st.text_area("📄 Extracted PDF Text", context, height=200) | |
if st.button("Generate Answer"): | |
with st.spinner("Generating answer..."): | |
prompt = f"[INST] Use the following context to answer the question:\n\n{context}\n\nQuestion: {query} [/INST]" | |
result = textgen(prompt)[0]["generated_text"] | |
st.success("Answer:") | |
st.write(result.replace(prompt, "").strip()) |