Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
import json | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
from ppt_parser import transfer_to_structure | |
from functools import lru_cache | |
# β Get Hugging Face token from Space Secrets | |
hf_token = os.getenv("HF_TOKEN") | |
# β Load summarization model (BART) | |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn") | |
# β Load Mistral model (memoized to avoid reloading) | |
def load_mistral(): | |
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1", token=hf_token) | |
model = AutoModelForCausalLM.from_pretrained( | |
"mistralai/Mistral-7B-Instruct-v0.1", | |
torch_dtype=torch.float16, | |
device_map="auto", | |
token=hf_token | |
) | |
return pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512) | |
mistral_pipe = load_mistral() | |
# β Global variable to hold extracted content | |
extracted_text = "" | |
def extract_text_from_pptx_json(parsed_json: dict) -> str: | |
text = "" | |
for slide in parsed_json.values(): | |
for shape in slide.values(): | |
if shape.get('type') == 'group': | |
for group_shape in shape.get('group_content', {}).values(): | |
if group_shape.get('type') == 'text': | |
for para_key, para in group_shape.items(): | |
if para_key.startswith("paragraph_"): | |
text += para.get("text", "") + "\n" | |
elif shape.get('type') == 'text': | |
for para_key, para in shape.items(): | |
if para_key.startswith("paragraph_"): | |
text += para.get("text", "") + "\n" | |
return text.strip() | |
def handle_pptx_upload(pptx_file): | |
global extracted_text | |
tmp_path = pptx_file.name | |
parsed_json_str, _ = transfer_to_structure(tmp_path, "images") | |
parsed_json = json.loads(parsed_json_str) | |
extracted_text = extract_text_from_pptx_json(parsed_json) | |
return extracted_text or "No readable text found in slides." | |
def summarize_text(): | |
global extracted_text | |
if not extracted_text: | |
return "Please upload and extract text from a PPTX file first." | |
summary = summarizer(extracted_text, max_length=200, min_length=50, do_sample=False)[0]['summary_text'] | |
return summary | |
def clarify_concept(question): | |
global extracted_text | |
if not extracted_text: | |
return "Please upload and extract text from a PPTX file first." | |
prompt = f"[INST] Use the following context to answer the question:\n\n{extracted_text}\n\nQuestion: {question} [/INST]" | |
response = mistral_pipe(prompt)[0]["generated_text"] | |
return response.replace(prompt, "").strip() | |
# β Gradio UI | |
with gr.Blocks() as demo: | |
gr.Markdown("## π§ AI-Powered Study Assistant for PowerPoint Lectures (Mistral 7B)") | |
pptx_input = gr.File(label="π Upload PPTX File", file_types=[".pptx"]) | |
extract_btn = gr.Button("π Extract & Summarize") | |
extracted_output = gr.Textbox(label="π Extracted Text", lines=10, interactive=False) | |
summary_output = gr.Textbox(label="π Summary", interactive=False) | |
extract_btn.click(handle_pptx_upload, inputs=[pptx_input], outputs=[extracted_output]) | |
extract_btn.click(summarize_text, outputs=[summary_output]) | |
question = gr.Textbox(label="β Ask a Question") | |
ask_btn = gr.Button("π¬ Ask Mistral") | |
ai_answer = gr.Textbox(label="π€ Mistral Answer", lines=4) | |
ask_btn.click(clarify_concept, inputs=[question], outputs=[ai_answer]) | |
if __name__ == "__main__": | |
demo.launch() |