Spaces:
Sleeping
Sleeping
File size: 3,615 Bytes
d881f5c 03836f6 d881f5c eb36578 587fb3d eb36578 d881f5c 03836f6 eb36578 d881f5c 587fb3d eb36578 d881f5c 9cb64f3 eb36578 d881f5c eb36578 d881f5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
import gradio as gr
import os
import json
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from ppt_parser import transfer_to_structure
from functools import lru_cache
# β
Get Hugging Face token from Space Secrets
hf_token = os.getenv("HF_TOKEN")
# β
Load summarization model (BART)
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
# β
Load Mistral model (memoized to avoid reloading)
@lru_cache(maxsize=1)
def load_mistral():
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1", token=hf_token)
model = AutoModelForCausalLM.from_pretrained(
"mistralai/Mistral-7B-Instruct-v0.1",
torch_dtype=torch.float16,
device_map="auto",
token=hf_token
)
return pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512)
mistral_pipe = load_mistral()
# β
Global variable to hold extracted content
extracted_text = ""
def extract_text_from_pptx_json(parsed_json: dict) -> str:
text = ""
for slide in parsed_json.values():
for shape in slide.values():
if shape.get('type') == 'group':
for group_shape in shape.get('group_content', {}).values():
if group_shape.get('type') == 'text':
for para_key, para in group_shape.items():
if para_key.startswith("paragraph_"):
text += para.get("text", "") + "\n"
elif shape.get('type') == 'text':
for para_key, para in shape.items():
if para_key.startswith("paragraph_"):
text += para.get("text", "") + "\n"
return text.strip()
def handle_pptx_upload(pptx_file):
global extracted_text
tmp_path = pptx_file.name
parsed_json_str, _ = transfer_to_structure(tmp_path, "images")
parsed_json = json.loads(parsed_json_str)
extracted_text = extract_text_from_pptx_json(parsed_json)
return extracted_text or "No readable text found in slides."
def summarize_text():
global extracted_text
if not extracted_text:
return "Please upload and extract text from a PPTX file first."
summary = summarizer(extracted_text, max_length=200, min_length=50, do_sample=False)[0]['summary_text']
return summary
def clarify_concept(question):
global extracted_text
if not extracted_text:
return "Please upload and extract text from a PPTX file first."
prompt = f"[INST] Use the following context to answer the question:\n\n{extracted_text}\n\nQuestion: {question} [/INST]"
response = mistral_pipe(prompt)[0]["generated_text"]
return response.replace(prompt, "").strip()
# β
Gradio UI
with gr.Blocks() as demo:
gr.Markdown("## π§ AI-Powered Study Assistant for PowerPoint Lectures (Mistral 7B)")
pptx_input = gr.File(label="π Upload PPTX File", file_types=[".pptx"])
extract_btn = gr.Button("π Extract & Summarize")
extracted_output = gr.Textbox(label="π Extracted Text", lines=10, interactive=False)
summary_output = gr.Textbox(label="π Summary", interactive=False)
extract_btn.click(handle_pptx_upload, inputs=[pptx_input], outputs=[extracted_output])
extract_btn.click(summarize_text, outputs=[summary_output])
question = gr.Textbox(label="β Ask a Question")
ask_btn = gr.Button("π¬ Ask Mistral")
ai_answer = gr.Textbox(label="π€ Mistral Answer", lines=4)
ask_btn.click(clarify_concept, inputs=[question], outputs=[ai_answer])
if __name__ == "__main__":
demo.launch() |