Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,49 +1,91 @@
|
|
1 |
-
import
|
2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
3 |
-
import PyPDF2
|
4 |
-
import torch
|
5 |
import os
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
|
10 |
-
# β
Load
|
11 |
-
|
12 |
|
13 |
-
# β
Load
|
14 |
-
@
|
15 |
-
def
|
16 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
17 |
-
"mistralai/Mistral-7B-Instruct-v0.1",
|
18 |
-
token=hf_token
|
19 |
-
)
|
20 |
model = AutoModelForCausalLM.from_pretrained(
|
21 |
"mistralai/Mistral-7B-Instruct-v0.1",
|
22 |
torch_dtype=torch.float16,
|
23 |
device_map="auto",
|
24 |
token=hf_token
|
25 |
)
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
if
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
|
|
|
|
|
|
2 |
import os
|
3 |
+
import json
|
4 |
+
import torch
|
5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
6 |
+
from ppt_parser import transfer_to_structure
|
7 |
|
8 |
+
# β
Hugging Face token for gated model access
|
9 |
+
hf_token = os.getenv("HF_TOKEN")
|
10 |
|
11 |
+
# β
Load summarization pipeline
|
12 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
13 |
|
14 |
+
# β
Load Mistral 7B Instruct model
|
15 |
+
@gr.cache()
|
16 |
+
def load_mistral():
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1", token=hf_token)
|
|
|
|
|
|
|
18 |
model = AutoModelForCausalLM.from_pretrained(
|
19 |
"mistralai/Mistral-7B-Instruct-v0.1",
|
20 |
torch_dtype=torch.float16,
|
21 |
device_map="auto",
|
22 |
token=hf_token
|
23 |
)
|
24 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512)
|
25 |
+
return pipe
|
26 |
+
|
27 |
+
mistral_pipe = load_mistral()
|
28 |
+
|
29 |
+
# β
Global text buffer
|
30 |
+
extracted_text = ""
|
31 |
+
|
32 |
+
def extract_text_from_pptx_json(parsed_json: dict) -> str:
|
33 |
+
text = ""
|
34 |
+
for slide in parsed_json.values():
|
35 |
+
for shape in slide.values():
|
36 |
+
if shape.get('type') == 'group':
|
37 |
+
for group_shape in shape.get('group_content', {}).values():
|
38 |
+
if group_shape.get('type') == 'text':
|
39 |
+
for para_key, para in group_shape.items():
|
40 |
+
if para_key.startswith("paragraph_"):
|
41 |
+
text += para.get("text", "") + "\n"
|
42 |
+
elif shape.get('type') == 'text':
|
43 |
+
for para_key, para in shape.items():
|
44 |
+
if para_key.startswith("paragraph_"):
|
45 |
+
text += para.get("text", "") + "\n"
|
46 |
+
return text.strip()
|
47 |
+
|
48 |
+
def handle_pptx_upload(pptx_file):
|
49 |
+
global extracted_text
|
50 |
+
tmp_path = pptx_file.name
|
51 |
+
parsed_json_str, _ = transfer_to_structure(tmp_path, "images")
|
52 |
+
parsed_json = json.loads(parsed_json_str)
|
53 |
+
extracted_text = extract_text_from_pptx_json(parsed_json)
|
54 |
+
return extracted_text or "No readable text found in slides."
|
55 |
+
|
56 |
+
def summarize_text():
|
57 |
+
global extracted_text
|
58 |
+
if not extracted_text:
|
59 |
+
return "Please upload and extract text from a PPTX file first."
|
60 |
+
summary = summarizer(extracted_text, max_length=200, min_length=50, do_sample=False)[0]['summary_text']
|
61 |
+
return summary
|
62 |
+
|
63 |
+
def clarify_concept(question):
|
64 |
+
global extracted_text
|
65 |
+
if not extracted_text:
|
66 |
+
return "Please upload and extract text from a PPTX file first."
|
67 |
+
prompt = f"[INST] Use the following context to answer the question:\n\n{extracted_text}\n\nQuestion: {question} [/INST]"
|
68 |
+
response = mistral_pipe(prompt)[0]["generated_text"]
|
69 |
+
return response.replace(prompt, "").strip()
|
70 |
+
|
71 |
+
# β
Gradio UI
|
72 |
+
with gr.Blocks() as demo:
|
73 |
+
gr.Markdown("## π§ AI-Powered Study Assistant for PowerPoint Lectures (Mistral 7B)")
|
74 |
+
|
75 |
+
pptx_input = gr.File(label="π Upload PPTX File", file_types=[".pptx"])
|
76 |
+
extract_btn = gr.Button("π Extract & Summarize")
|
77 |
+
|
78 |
+
extracted_output = gr.Textbox(label="π Extracted Text", lines=10, interactive=False)
|
79 |
+
summary_output = gr.Textbox(label="π Summary", interactive=False)
|
80 |
+
|
81 |
+
extract_btn.click(handle_pptx_upload, inputs=[pptx_input], outputs=[extracted_output])
|
82 |
+
extract_btn.click(summarize_text, outputs=[summary_output])
|
83 |
+
|
84 |
+
question = gr.Textbox(label="β Ask a Question")
|
85 |
+
ask_btn = gr.Button("π¬ Ask Mistral")
|
86 |
+
ai_answer = gr.Textbox(label="π€ Mistral Answer", lines=4)
|
87 |
+
|
88 |
+
ask_btn.click(clarify_concept, inputs=[question], outputs=[ai_answer])
|
89 |
+
|
90 |
+
if __name__ == "__main__":
|
91 |
+
demo.launch()
|