Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,228 +3,47 @@ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
|
3 |
import PyPDF2
|
4 |
import torch
|
5 |
import os
|
6 |
-
from huggingface_hub import login
|
7 |
-
import warnings
|
8 |
-
warnings.filterwarnings("ignore")
|
9 |
|
10 |
-
st.set_page_config(page_title="
|
11 |
-
st.title("🧠 AI Study Assistant using Mistral 7B")
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
"""Validate and authenticate Hugging Face token"""
|
16 |
-
hf_token = None
|
17 |
-
|
18 |
-
# Try multiple sources for the token
|
19 |
-
token_sources = [
|
20 |
-
("Environment Variable", os.getenv("HF_TOKEN")),
|
21 |
-
("Streamlit Secrets", st.secrets.get("HF_TOKEN", None) if hasattr(st, 'secrets') else None),
|
22 |
-
("Manual Input", None) # Will be handled below
|
23 |
-
]
|
24 |
-
|
25 |
-
for source, token in token_sources:
|
26 |
-
if token:
|
27 |
-
st.success(f"✅ Token found from: {source}")
|
28 |
-
hf_token = token
|
29 |
-
break
|
30 |
-
|
31 |
-
if not hf_token:
|
32 |
-
st.warning("🔑 No token found in environment or secrets. Please enter manually:")
|
33 |
-
hf_token = st.text_input(
|
34 |
-
"Enter your Hugging Face Token:",
|
35 |
-
type="password",
|
36 |
-
help="Get your token from https://huggingface.co/settings/tokens"
|
37 |
-
)
|
38 |
-
|
39 |
-
if hf_token:
|
40 |
-
try:
|
41 |
-
# Test token validity
|
42 |
-
api = HfApi()
|
43 |
-
user_info = api.whoami(token=hf_token)
|
44 |
-
st.success(f"✅ Authenticated as: {user_info['name']}")
|
45 |
-
|
46 |
-
# Attempt to login
|
47 |
-
login(token=hf_token, add_to_git_credential=False)
|
48 |
-
return hf_token
|
49 |
-
|
50 |
-
except Exception as e:
|
51 |
-
st.error(f"❌ Token validation failed: {str(e)}")
|
52 |
-
st.info("Please check your token and ensure you have access to Mistral 7B model")
|
53 |
-
return None
|
54 |
-
|
55 |
-
return None
|
56 |
-
|
57 |
-
def check_model_access(token):
|
58 |
-
"""Check if user has access to the Mistral model"""
|
59 |
-
try:
|
60 |
-
api = HfApi()
|
61 |
-
model_info = api.model_info("mistralai/Mistral-7B-Instruct-v0.1", token=token)
|
62 |
-
st.success("✅ Model access confirmed")
|
63 |
-
return True
|
64 |
-
except Exception as e:
|
65 |
-
st.error("❌ Cannot access Mistral 7B model")
|
66 |
-
st.info("""
|
67 |
-
**To fix this:**
|
68 |
-
1. Visit: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
|
69 |
-
2. Click "Request Access"
|
70 |
-
3. Wait for approval (usually instant for most users)
|
71 |
-
4. Refresh this page
|
72 |
-
""")
|
73 |
-
return False
|
74 |
|
|
|
75 |
@st.cache_resource
|
76 |
-
def load_model(
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
# Load model with optimizations
|
93 |
-
model = AutoModelForCausalLM.from_pretrained(
|
94 |
-
"mistralai/Mistral-7B-Instruct-v0.1",
|
95 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
96 |
-
device_map="auto" if torch.cuda.is_available() else None,
|
97 |
-
token=hf_token,
|
98 |
-
trust_remote_code=True,
|
99 |
-
low_cpu_mem_usage=True
|
100 |
-
)
|
101 |
-
|
102 |
-
# Create pipeline
|
103 |
-
pipe = pipeline(
|
104 |
-
"text-generation",
|
105 |
-
model=model,
|
106 |
-
tokenizer=tokenizer,
|
107 |
-
max_new_tokens=512,
|
108 |
-
temperature=0.7,
|
109 |
-
do_sample=True,
|
110 |
-
pad_token_id=tokenizer.eos_token_id
|
111 |
-
)
|
112 |
-
|
113 |
-
st.success("✅ Model loaded successfully!")
|
114 |
-
return pipe
|
115 |
-
|
116 |
-
except Exception as e:
|
117 |
-
st.error(f"❌ Model loading failed: {str(e)}")
|
118 |
-
st.info("Try refreshing the page or check your internet connection")
|
119 |
-
return None
|
120 |
-
|
121 |
def extract_text_from_pdf(file):
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
def format_prompt(context, query):
|
141 |
-
"""Create properly formatted Mistral prompt"""
|
142 |
-
if context.strip():
|
143 |
-
prompt = f"<s>[INST] Use the following context to answer the question comprehensively:\n\nContext:\n{context[:3000]}...\n\nQuestion: {query}\n\nProvide a detailed, accurate answer based on the context. [/INST]"
|
144 |
-
else:
|
145 |
-
prompt = f"<s>[INST] {query} [/INST]"
|
146 |
-
|
147 |
-
return prompt
|
148 |
-
|
149 |
-
# Main Application Flow
|
150 |
-
def main():
|
151 |
-
# Step 1: Validate token
|
152 |
-
hf_token = validate_hf_token()
|
153 |
-
|
154 |
-
if not hf_token:
|
155 |
-
st.stop()
|
156 |
-
|
157 |
-
# Step 2: Check model access
|
158 |
-
if not check_model_access(hf_token):
|
159 |
-
st.stop()
|
160 |
-
|
161 |
-
# Step 3: Load model
|
162 |
-
textgen = load_model(hf_token)
|
163 |
-
|
164 |
-
if not textgen:
|
165 |
-
st.stop()
|
166 |
-
|
167 |
-
# Step 4: User Interface
|
168 |
-
st.markdown("---")
|
169 |
-
|
170 |
-
col1, col2 = st.columns([2, 1])
|
171 |
-
|
172 |
-
with col1:
|
173 |
-
query = st.text_area(
|
174 |
-
"💭 Ask your question:",
|
175 |
-
height=100,
|
176 |
-
placeholder="e.g., Explain machine learning concepts, summarize this document, etc."
|
177 |
-
)
|
178 |
-
|
179 |
-
with col2:
|
180 |
-
uploaded_file = st.file_uploader(
|
181 |
-
"📎 Upload PDF Context (Optional):",
|
182 |
-
type=["pdf"],
|
183 |
-
help="Upload a PDF to provide context for your question"
|
184 |
-
)
|
185 |
-
|
186 |
-
# Process uploaded file
|
187 |
-
context = ""
|
188 |
-
if uploaded_file:
|
189 |
-
with st.spinner("📖 Extracting text from PDF..."):
|
190 |
-
context = extract_text_from_pdf(uploaded_file)
|
191 |
-
|
192 |
-
if context:
|
193 |
-
with st.expander("📄 View Extracted Text", expanded=False):
|
194 |
-
st.text_area("PDF Content Preview:", context[:1000] + "..." if len(context) > 1000 else context, height=200)
|
195 |
-
st.success(f"✅ Extracted {len(context)} characters from PDF")
|
196 |
-
|
197 |
-
# Generate answer
|
198 |
-
if st.button("🚀 Generate Answer", type="primary"):
|
199 |
-
if not query.strip():
|
200 |
-
st.warning("⚠️ Please enter a question")
|
201 |
-
return
|
202 |
-
|
203 |
-
with st.spinner("🤔 Generating answer..."):
|
204 |
-
try:
|
205 |
-
prompt = format_prompt(context, query)
|
206 |
-
|
207 |
-
# Generate response
|
208 |
-
result = textgen(prompt, max_new_tokens=512, temperature=0.7)
|
209 |
-
generated_text = result[0]["generated_text"]
|
210 |
-
|
211 |
-
# Extract only the generated part
|
212 |
-
answer = generated_text.split("[/INST]")[-1].strip()
|
213 |
-
|
214 |
-
# Display result
|
215 |
-
st.markdown("### 🎯 Answer:")
|
216 |
-
st.markdown(answer)
|
217 |
-
|
218 |
-
# Show token usage info
|
219 |
-
with st.expander("📊 Generation Details", expanded=False):
|
220 |
-
st.write(f"**Prompt length:** {len(prompt)} characters")
|
221 |
-
st.write(f"**Response length:** {len(answer)} characters")
|
222 |
-
st.write(f"**Context used:** {'Yes' if context else 'No'}")
|
223 |
-
|
224 |
-
except Exception as e:
|
225 |
-
st.error(f"❌ Generation failed: {str(e)}")
|
226 |
-
st.info("Try with a shorter question or refresh the page")
|
227 |
-
|
228 |
-
# Run the application
|
229 |
-
if __name__ == "__main__":
|
230 |
-
main()
|
|
|
3 |
import PyPDF2
|
4 |
import torch
|
5 |
import os
|
|
|
|
|
|
|
6 |
|
7 |
+
st.set_page_config(page_title="Perplexity-style Q&A (Mistral Auth)", layout="wide")
|
8 |
+
st.title("🧠 AI Study Assistant using Mistral 7B (Authenticated)")
|
9 |
|
10 |
+
# ✅ Load Hugging Face token securely
|
11 |
+
hf_token = os.getenv("HF_TOKEN") # your Hugging Face secret name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
# ✅ Load the gated model using your token
|
14 |
@st.cache_resource
|
15 |
+
def load_model():
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
17 |
+
"mistralai/Mistral-7B-Instruct-v0.1",
|
18 |
+
token=hf_token
|
19 |
+
)
|
20 |
+
model = AutoModelForCausalLM.from_pretrained(
|
21 |
+
"mistralai/Mistral-7B-Instruct-v0.1",
|
22 |
+
torch_dtype=torch.float16,
|
23 |
+
device_map="auto",
|
24 |
+
token=hf_token
|
25 |
+
)
|
26 |
+
return pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512)
|
27 |
+
|
28 |
+
textgen = load_model()
|
29 |
+
|
30 |
+
# ✅ PDF parsing
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
def extract_text_from_pdf(file):
|
32 |
+
reader = PyPDF2.PdfReader(file)
|
33 |
+
return "\n".join([p.extract_text() for p in reader.pages if p.extract_text()])
|
34 |
+
|
35 |
+
# ✅ UI
|
36 |
+
query = st.text_input("Ask a question or enter a topic:")
|
37 |
+
uploaded_file = st.file_uploader("Or upload a PDF to use as context:", type=["pdf"])
|
38 |
+
|
39 |
+
context = ""
|
40 |
+
if uploaded_file:
|
41 |
+
context = extract_text_from_pdf(uploaded_file)
|
42 |
+
st.text_area("📄 Extracted PDF Text", context, height=200)
|
43 |
+
|
44 |
+
if st.button("Generate Answer"):
|
45 |
+
with st.spinner("Generating answer..."):
|
46 |
+
prompt = f"[INST] Use the following context to answer the question:\n\n{context}\n\nQuestion: {query} [/INST]"
|
47 |
+
result = textgen(prompt)[0]["generated_text"]
|
48 |
+
st.success("Answer:")
|
49 |
+
st.write(result.replace(prompt, "").strip())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|