Spaces:
Sleeping
Sleeping
import os | |
import json | |
import torch | |
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
from ppt_parser import transfer_to_structure | |
# β Hugging Face token (optional if public + unauthenticated) | |
hf_token = os.getenv("HF_TOKEN", None) | |
model_id = "meta-llama/Llama-3.1-8B-Instruct" | |
# β Load model + tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_token) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
token=hf_token, | |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, | |
device_map="auto" | |
) | |
llama_pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512) | |
# β Global storage | |
extracted_text = "" | |
def extract_text_from_pptx_json(parsed_json: dict) -> str: | |
text = "" | |
for slide in parsed_json.values(): | |
for shape in slide.values(): | |
if shape.get("type") == "group": | |
for group_shape in shape.get("group_content", {}).values(): | |
if group_shape.get("type") == "text": | |
for para_key, para in group_shape.items(): | |
if para_key.startswith("paragraph_"): | |
text += para.get("text", "") + "\n" | |
elif shape.get("type") == "text": | |
for para_key, para in shape.items(): | |
if para_key.startswith("paragraph_"): | |
text += para.get("text", "") + "\n" | |
return text.strip() | |
def handle_pptx_upload(pptx_file): | |
global extracted_text | |
tmp_path = pptx_file.name | |
parsed_json_str, _ = transfer_to_structure(tmp_path, "images") | |
parsed_json = json.loads(parsed_json_str) | |
extracted_text = extract_text_from_pptx_json(parsed_json) | |
return extracted_text or "No readable text found in slides." | |
def ask_llama(question): | |
global extracted_text | |
if not extracted_text: | |
return "Please upload a PPTX file first." | |
prompt = f"<|user|>\nContext:\n{extracted_text}\n\nQuestion: {question}<|end|>\n<|assistant|>\n" | |
response = llama_pipe(prompt)[0]["generated_text"] | |
return response.replace(prompt, "").strip() | |
# β Gradio UI | |
with gr.Blocks() as demo: | |
gr.Markdown("## π§ Study Assistant with LLaMA 3.1 8B") | |
pptx_input = gr.File(label="π Upload PPTX File", file_types=[".pptx"]) | |
extract_btn = gr.Button("π Extract Slide Text") | |
extracted_output = gr.Textbox(label="π Slide Text", lines=10, interactive=False) | |
extract_btn.click(handle_pptx_upload, inputs=[pptx_input], outputs=[extracted_output]) | |
question = gr.Textbox(label="β Ask a Question") | |
ask_btn = gr.Button("π¬ Ask LLaMA") | |
ai_answer = gr.Textbox(label="π€ LLaMA Answer", lines=6) | |
ask_btn.click(ask_llama, inputs=[question], outputs=[ai_answer]) | |
if __name__ == "__main__": | |
demo.launch() |