Studymaker2 / app.py
g0th's picture
Update app.py
c0be42f verified
import os
import json
import torch
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from ppt_parser import transfer_to_structure
# βœ… Hugging Face token (optional if public + unauthenticated)
hf_token = os.getenv("HF_TOKEN", None)
model_id = "meta-llama/Llama-3.1-8B-Instruct"
# βœ… Load model + tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_token)
model = AutoModelForCausalLM.from_pretrained(
model_id,
token=hf_token,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto"
)
llama_pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512)
# βœ… Global storage
extracted_text = ""
def extract_text_from_pptx_json(parsed_json: dict) -> str:
text = ""
for slide in parsed_json.values():
for shape in slide.values():
if shape.get("type") == "group":
for group_shape in shape.get("group_content", {}).values():
if group_shape.get("type") == "text":
for para_key, para in group_shape.items():
if para_key.startswith("paragraph_"):
text += para.get("text", "") + "\n"
elif shape.get("type") == "text":
for para_key, para in shape.items():
if para_key.startswith("paragraph_"):
text += para.get("text", "") + "\n"
return text.strip()
def handle_pptx_upload(pptx_file):
global extracted_text
tmp_path = pptx_file.name
parsed_json_str, _ = transfer_to_structure(tmp_path, "images")
parsed_json = json.loads(parsed_json_str)
extracted_text = extract_text_from_pptx_json(parsed_json)
return extracted_text or "No readable text found in slides."
def ask_llama(question):
global extracted_text
if not extracted_text:
return "Please upload a PPTX file first."
prompt = f"<|user|>\nContext:\n{extracted_text}\n\nQuestion: {question}<|end|>\n<|assistant|>\n"
response = llama_pipe(prompt)[0]["generated_text"]
return response.replace(prompt, "").strip()
# βœ… Gradio UI
with gr.Blocks() as demo:
gr.Markdown("## 🧠 Study Assistant with LLaMA 3.1 8B")
pptx_input = gr.File(label="πŸ“‚ Upload PPTX File", file_types=[".pptx"])
extract_btn = gr.Button("πŸ“œ Extract Slide Text")
extracted_output = gr.Textbox(label="πŸ“„ Slide Text", lines=10, interactive=False)
extract_btn.click(handle_pptx_upload, inputs=[pptx_input], outputs=[extracted_output])
question = gr.Textbox(label="❓ Ask a Question")
ask_btn = gr.Button("πŸ’¬ Ask LLaMA")
ai_answer = gr.Textbox(label="πŸ€– LLaMA Answer", lines=6)
ask_btn.click(ask_llama, inputs=[question], outputs=[ai_answer])
if __name__ == "__main__":
demo.launch()