gabor1's picture
Update app.py
73dbadf verified
raw
history blame
1.31 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("BAAI/bge-reranker-v2-m3")
model = AutoModelForSequenceClassification.from_pretrained("BAAI/bge-reranker-v2-m3")
# Define reranking function
def rerank(query, documents_text):
documents = documents_text.strip().split('\n')
pairs = [(query, doc) for doc in documents]
inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors="pt")
with torch.no_grad():
scores = model(**inputs).logits.squeeze(-1)
results = sorted(zip(documents, scores.tolist()), key=lambda x: x[1], reverse=True)
output = "\n\n".join([f"Score: {score:.4f}\n{doc}" for doc, score in results])
return output
# Gradio Interface
iface = gr.Interface(
fn=rerank,
inputs=[
gr.Textbox(label="Query", placeholder="Enter your search query", lines=1),
gr.Textbox(label="Documents (one per line)", placeholder="Enter one document per line", lines=10)
],
outputs=gr.Textbox(label="Reranked Output"),
title="BGE Reranker v2 M3",
description="Input a query and multiple documents. Returns reranked results with scores."
)
# Launch the interface (no share=True needed)
iface.launch()