EXCEL.CHAT / app.py
garyd1's picture
Create app.py
1d1e331 verified
raw
history blame
6.22 kB
import os
import streamlit as st
import pandas as pd
import openai
import torch
import matplotlib.pyplot as plt
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from dotenv import load_dotenv
import anthropic
import ast
import re
# Load environment variables
load_dotenv()
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
os.environ["ANTHROPIC_API_KEY"] = os.getenv("ANTHROPIC_API_KEY")
# UI Styling
st.markdown(
"""
<style>
.stButton button {
background-color: #1F6FEB;
color: white;
border-radius: 8px;
border: none;
padding: 10px 20px;
font-weight: bold;
}
.stButton button:hover {
background-color: #1A4FC5;
}
.stTextInput > div > input {
border: 1px solid #30363D;
background-color: #161B22;
color: #C9D1D9;
border-radius: 6px;
padding: 10px;
}
.stFileUploader > div {
border: 2px dashed #30363D;
background-color: #161B22;
color: #C9D1D9;
border-radius: 6px;
padding: 10px;
}
.response-box {
background-color: #161B22;
padding: 10px;
border-radius: 6px;
margin-bottom: 10px;
color: #FFFFFF;
}
</style>
""",
unsafe_allow_html=True
)
st.title("Excel Q&A Chatbot πŸ“Š")
# Model Selection
model_choice = st.selectbox("Select LLM Model", ["OpenAI GPT-3.5", "Claude 3 Haiku", "Mistral-7B"])
# Load appropriate model based on selection
if model_choice == "Mistral-7B":
model_name = "mistralai/Mistral-7B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)
def ask_mistral(query):
inputs = tokenizer(query, return_tensors="pt").to("cuda")
output = model.generate(**inputs)
return tokenizer.decode(output[0])
elif model_choice == "Claude 3 Haiku":
client = anthropic.Anthropic(api_key=os.environ["ANTHROPIC_API_KEY"])
def ask_claude(query):
response = client.messages.create(
model="claude-3-haiku",
max_tokens=512,
messages=[{"role": "user", "content": query}]
)
return response.content[0]["text"]
else:
client = openai.OpenAI()
def ask_gpt(query):
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": query}]
)
return response.choices[0].message.content
# File Upload with validation
uploaded_file = st.file_uploader("Upload a file", type=["csv", "xlsx", "xls", "json", "tsv"])
if uploaded_file is not None:
file_extension = uploaded_file.name.split(".")[-1].lower()
try:
if file_extension == "csv":
df = pd.read_csv(uploaded_file)
elif file_extension in ["xlsx", "xls"]:
df = pd.read_excel(uploaded_file, engine="openpyxl")
elif file_extension == "json":
df = pd.read_json(uploaded_file)
elif file_extension == "tsv":
df = pd.read_csv(uploaded_file, sep="\t")
else:
st.error("Unsupported file format. Please upload a CSV, Excel, JSON, or TSV file.")
st.stop()
st.write("### Preview of Data:")
st.write(df.head())
# Extract metadata
column_names = df.columns.tolist()
data_types = df.dtypes.apply(lambda x: x.name).to_dict()
missing_values = df.isnull().sum().to_dict()
# Display metadata
st.write("### Column Details:")
st.write(pd.DataFrame({"Column": column_names, "Type": data_types.values(), "Missing Values": missing_values.values()}))
except Exception as e:
st.error(f"Error loading file: {str(e)}")
st.stop()
# User Query
query = st.text_input("Ask a question about this data:")
if st.button("Submit Query"):
if query:
# Interpret the query using selected LLM
if model_choice == "Mistral-7B":
parsed_query = ask_mistral(f"Convert this question into a structured data operation: {query}")
elif model_choice == "Claude 3 Haiku":
parsed_query = ask_claude(f"Convert this question into a structured data operation: {query}")
else:
parsed_query = ask_gpt(f"Convert this question into a structured data operation: {query}")
# Validate and clean query
parsed_query = re.sub(r"[^a-zA-Z0-9_()\[\]"'., ]", "", parsed_query.strip())
st.write(f"Parsed Query: `{parsed_query}`")
# Predefined Safe Execution Methods
SAFE_OPERATIONS = {
"sum": lambda col: df[col].sum(),
"mean": lambda col: df[col].mean(),
"max": lambda col: df[col].max(),
"groupby_sum": lambda col, group_by: df.groupby(group_by)[col].sum()
}
# Safe Execution
try:
exec_result = eval(parsed_query, {"df": df, "pd": pd, "SAFE_OPERATIONS": SAFE_OPERATIONS})
st.write("### Result:")
st.write(exec_result if isinstance(exec_result, pd.DataFrame) else str(exec_result))
# If numerical data, show a visualization dynamically
if isinstance(exec_result, pd.Series):
fig, ax = plt.subplots()
if exec_result.dtype in ["int64", "float64"]:
exec_result.plot(kind="bar", ax=ax)
elif exec_result.dtype == "object":
exec_result.value_counts().plot(kind="bar", ax=ax)
st.pyplot(fig)
except SyntaxError as e:
st.error(f"Syntax Error in parsed query: {str(e)}")
except Exception as e:
st.error(f"Error executing query: {str(e)}")
# Memory for context retention
if "query_history" not in st.session_state:
st.session_state.query_history = []
st.session_state.query_history.append(query)