File size: 2,535 Bytes
00b93d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2201b09
00b93d3
 
 
2201b09
00b93d3
 
 
 
 
2201b09
 
00b93d3
 
 
2201b09
 
 
00b93d3
 
 
 
 
 
 
 
2201b09
 
00b93d3
 
 
 
 
 
2201b09
00b93d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import gradio as gr
import torch
import cv2
import numpy as np
from torchvision import transforms
from PIL import Image
from transformers import DPTForDepthEstimation, DPTFeatureExtractor

# Load depth estimation model
model_name = "Intel/dpt-large"
feature_extractor = DPTFeatureExtractor.from_pretrained(model_name)
depth_model = DPTForDepthEstimation.from_pretrained(model_name)
depth_model.eval()

def estimate_depth(image):
    """Estimate depth map from image."""
    image = image.convert("RGB")
    inputs = feature_extractor(images=image, return_tensors="pt")
    with torch.no_grad():
        outputs = depth_model(**inputs)
        depth = outputs.predicted_depth.squeeze().cpu().numpy()
    depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255
    return depth.astype(np.uint8)

def warp_design(cloth_img, design_img):
    """Warp the design onto the clothing while preserving folds."""
    cloth_img = cloth_img.convert("RGB")
    design_img = design_img.convert("RGB")
    cloth_np = np.array(cloth_img)
    design_np = np.array(design_img)
    
    # Ensure both images have the same dimensions
    design_np = cv2.resize(design_np, (cloth_np.shape[1], cloth_np.shape[0]))
    
    # Estimate depth for fold detection
    depth_map = estimate_depth(cloth_img)
    
    # Generate displacement map based on depth
    displacement_x = cv2.Sobel(depth_map, cv2.CV_32F, 1, 0, ksize=5)
    displacement_y = cv2.Sobel(depth_map, cv2.CV_32F, 0, 1, ksize=5)
    
    # Normalize displacement values
    displacement_x = cv2.normalize(displacement_x, None, -5, 5, cv2.NORM_MINMAX)
    displacement_y = cv2.normalize(displacement_y, None, -5, 5, cv2.NORM_MINMAX)
    
    # Warp design using displacement map
    h, w, _ = cloth_np.shape
    map_x, map_y = np.meshgrid(np.arange(w), np.arange(h))
    map_x = np.float32(map_x + displacement_x)
    map_y = np.float32(map_y + displacement_y)
    warped_design = cv2.remap(design_np, map_x, map_y, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT)
    
    # Blend images
    blended = cv2.addWeighted(cloth_np, 0.6, warped_design, 0.4, 0)
    return Image.fromarray(blended)

def main(cloth, design):
    return warp_design(cloth, design)

iface = gr.Interface(
    fn=main,
    inputs=[gr.Image(type="pil"), gr.Image(type="pil")],
    outputs=gr.Image(type="pil"),
    title="AI Cloth Design Warping",
    description="Upload a clothing image and a design to blend it naturally, considering fabric folds."
)

if __name__ == "__main__":
    iface.launch()