File size: 2,535 Bytes
00b93d3 2201b09 00b93d3 2201b09 00b93d3 2201b09 00b93d3 2201b09 00b93d3 2201b09 00b93d3 2201b09 00b93d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
import gradio as gr
import torch
import cv2
import numpy as np
from torchvision import transforms
from PIL import Image
from transformers import DPTForDepthEstimation, DPTFeatureExtractor
# Load depth estimation model
model_name = "Intel/dpt-large"
feature_extractor = DPTFeatureExtractor.from_pretrained(model_name)
depth_model = DPTForDepthEstimation.from_pretrained(model_name)
depth_model.eval()
def estimate_depth(image):
"""Estimate depth map from image."""
image = image.convert("RGB")
inputs = feature_extractor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = depth_model(**inputs)
depth = outputs.predicted_depth.squeeze().cpu().numpy()
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255
return depth.astype(np.uint8)
def warp_design(cloth_img, design_img):
"""Warp the design onto the clothing while preserving folds."""
cloth_img = cloth_img.convert("RGB")
design_img = design_img.convert("RGB")
cloth_np = np.array(cloth_img)
design_np = np.array(design_img)
# Ensure both images have the same dimensions
design_np = cv2.resize(design_np, (cloth_np.shape[1], cloth_np.shape[0]))
# Estimate depth for fold detection
depth_map = estimate_depth(cloth_img)
# Generate displacement map based on depth
displacement_x = cv2.Sobel(depth_map, cv2.CV_32F, 1, 0, ksize=5)
displacement_y = cv2.Sobel(depth_map, cv2.CV_32F, 0, 1, ksize=5)
# Normalize displacement values
displacement_x = cv2.normalize(displacement_x, None, -5, 5, cv2.NORM_MINMAX)
displacement_y = cv2.normalize(displacement_y, None, -5, 5, cv2.NORM_MINMAX)
# Warp design using displacement map
h, w, _ = cloth_np.shape
map_x, map_y = np.meshgrid(np.arange(w), np.arange(h))
map_x = np.float32(map_x + displacement_x)
map_y = np.float32(map_y + displacement_y)
warped_design = cv2.remap(design_np, map_x, map_y, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT)
# Blend images
blended = cv2.addWeighted(cloth_np, 0.6, warped_design, 0.4, 0)
return Image.fromarray(blended)
def main(cloth, design):
return warp_design(cloth, design)
iface = gr.Interface(
fn=main,
inputs=[gr.Image(type="pil"), gr.Image(type="pil")],
outputs=gr.Image(type="pil"),
title="AI Cloth Design Warping",
description="Upload a clothing image and a design to blend it naturally, considering fabric folds."
)
if __name__ == "__main__":
iface.launch() |