Design_warper / networks.py
gaur3009's picture
Update networks.py
3ecccc5 verified
raw
history blame
10.7 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init
from torchvision import models
import os
import numpy as np
class Options:
def __init__(self):
# Default values
self.fine_height = 256
self.fine_width = 192
self.grid_size = 5
self.use_dropout = False
self.input_nc = 22
self.input_nc_B = 1
self.tom_input_nc = 26
self.tom_output_nc = 4
def weights_init_normal(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find('Linear') != -1:
init.normal(m.weight.data, 0.0, 0.02)
elif classname.find('BatchNorm2d') != -1:
init.normal_(m.weight.data, 1.0, 0.02)
init.constant_(m.bias.data, 0.0)
def init_weights(net, init_type='normal'):
print('initialization method [%s]' % init_type)
net.apply(weights_init_normal)
class FeatureExtraction(nn.Module):
def __init__(self, input_nc, ngf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_dropout=False):
super(FeatureExtraction, self).__init__()
downconv = nn.Conv2d(input_nc, ngf, kernel_size=4, stride=2, padding=1)
model = [downconv, nn.ReLU(True), norm_layer(ngf)]
for i in range(n_layers):
in_ngf = 2**i * ngf if 2**i * ngf < 512 else 512
out_ngf = 2**(i+1) * ngf if 2**i * ngf < 512 else 512
downconv = nn.Conv2d(in_ngf, out_ngf, kernel_size=4, stride=2, padding=1)
model += [downconv, nn.ReLU(True), norm_layer(out_ngf)]
model += [nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1), nn.ReLU(True)]
model += [norm_layer(512)]
model += [nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1), nn.ReLU(True)]
self.model = nn.Sequential(*model)
init_weights(self.model)
class FeatureL2Norm(nn.Module):
def __init__(self):
super(FeatureL2Norm, self).__init__()
def forward(self, feature):
epsilon = 1e-6
norm = torch.pow(torch.sum(torch.pow(feature, 2), 1) + epsilon, 0.5).unsqueeze(1).expand_as(feature)
return torch.div(feature, norm)
class FeatureCorrelation(nn.Module):
def __init__(self):
super(FeatureCorrelation, self).__init__()
def forward(self, feature_A, feature_B):
b, c, h, w = feature_A.size()
feature_A = feature_A.transpose(2, 3).contiguous().view(b, c, h*w)
feature_B = feature_B.view(b, c, h*w).transpose(1, 2)
feature_mul = torch.bmm(feature_B, feature_A)
return feature_mul.view(b, h, w, h*w).transpose(2, 3).transpose(1, 2)
class FeatureRegression(nn.Module):
def __init__(self, input_nc=512, output_dim=6):
super(FeatureRegression, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(input_nc, 512, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 256, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 128, kernel_size=3, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 64, kernel_size=3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
)
self.linear = nn.Linear(64 * 4 * 3, output_dim)
self.tanh = nn.Tanh()
def forward(self, x):
x = self.conv(x)
x = x.contiguous().view(x.size(0), -1)
x = self.linear(x)
return self.tanh(x)
class TpsGridGen(nn.Module):
def __init__(self, out_h=256, out_w=192, grid_size=5):
super(TpsGridGen, self).__init__()
self.out_h, self.out_w = out_h, out_w
self.grid_size = grid_size
# Create grid
axis_coords = np.linspace(-1, 1, grid_size)
self.N = grid_size * grid_size
P_Y, P_X = np.meshgrid(axis_coords, axis_coords)
P_X = torch.FloatTensor(P_X.reshape(-1, 1))
P_Y = torch.FloatTensor(P_Y.reshape(-1, 1))
self.P_X_base = P_X.clone()
self.P_Y_base = P_Y.clone()
self.Li = self.compute_L_inverse(P_X, P_Y).unsqueeze(0)
# Grid for interpolation
grid_X, grid_Y = np.meshgrid(np.linspace(-1, 1, out_w), np.linspace(-1, 1, out_h))
self.grid_X = torch.FloatTensor(grid_X).unsqueeze(0).unsqueeze(3)
self.grid_Y = torch.FloatTensor(grid_Y).unsqueeze(0).unsqueeze(3)
def compute_L_inverse(self, X, Y):
N = X.size()[0]
Xmat, Ymat = X.expand(N, N), Y.expand(N, N)
P_dist_squared = torch.pow(Xmat-Xmat.transpose(0, 1), 2) + torch.pow(Ymat-Ymat.transpose(0, 1), 2)
P_dist_squared[P_dist_squared == 0] = 1
K = torch.mul(P_dist_squared, torch.log(P_dist_squared))
O = torch.FloatTensor(N, 1).fill_(1)
Z = torch.FloatTensor(3, 3).fill_(0)
P = torch.cat((O, X, Y), 1)
L = torch.cat((torch.cat((K, P), 1), torch.cat((P.transpose(0, 1), Z), 1)), 0)
return torch.inverse(L)
def forward(self, theta):
theta = theta.contiguous()
batch_size = theta.size()[0]
# Split theta into point coordinates
Q_X = theta[:, :self.N].contiguous().view(batch_size, self.N, 1)
Q_Y = theta[:, self.N:].contiguous().view(batch_size, self.N, 1)
Q_X = Q_X + self.P_X_base.expand_as(Q_X)
Q_Y = Q_Y + self.P_Y_base.expand_as(Q_Y)
# Compute weights
W_X, W_Y = self.apply_theta(Q_X, Q_Y)
# Calculate transformed grid
points_X, points_Y = self.transform_points(W_X, W_Y)
return torch.cat((points_X, points_Y), 3)
class GMM(nn.Module):
def __init__(self, opt=None):
super(GMM, self).__init__()
if opt is None:
opt = Options()
self.extractionA = FeatureExtraction(opt.input_nc)
self.extractionB = FeatureExtraction(opt.input_nc_B)
self.l2norm = FeatureL2Norm()
self.correlation = FeatureCorrelation()
self.regression = FeatureRegression(input_nc=192, output_dim=2*opt.grid_size**2)
self.gridGen = TpsGridGen(opt.fine_height, opt.fine_width, opt.grid_size)
def forward(self, inputA, inputB):
featureA = self.extractionA(inputA)
featureB = self.extractionB(inputB)
featureA = self.l2norm(featureA)
featureB = self.l2norm(featureB)
correlation = self.correlation(featureA, featureB)
theta = self.regression(correlation)
grid = self.gridGen(theta)
return grid, theta
class UnetGenerator(nn.Module):
def __init__(self, input_nc, output_nc, num_downs, ngf=64, norm_layer=nn.InstanceNorm2d):
super(UnetGenerator, self).__init__()
unet_block = UnetSkipConnectionBlock(
ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True)
for _ in range(num_downs - 5):
unet_block = UnetSkipConnectionBlock(
ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
self.model = UnetSkipConnectionBlock(
output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer)
def forward(self, input):
return self.model(input)
class UnetSkipConnectionBlock(nn.Module):
def __init__(self, outer_nc, inner_nc, input_nc=None, submodule=None,
outermost=False, innermost=False, norm_layer=nn.InstanceNorm2d):
super(UnetSkipConnectionBlock, self).__init__()
self.outermost = outermost
use_bias = norm_layer == nn.InstanceNorm2d
if input_nc is None:
input_nc = outer_nc
downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4, stride=2, padding=1, bias=use_bias)
downrelu = nn.LeakyReLU(0.2, True)
downnorm = norm_layer(inner_nc)
uprelu = nn.ReLU(True)
upnorm = norm_layer(outer_nc)
if outermost:
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1)
down = [downconv]
up = [uprelu, upconv, nn.Tanh()]
model = down + [submodule] + up
elif innermost:
upconv = nn.ConvTranspose2d(inner_nc, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias)
down = [downrelu, downconv]
up = [uprelu, upconv, upnorm]
model = down + up
else:
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias)
down = [downrelu, downconv, downnorm]
up = [uprelu, upconv, upnorm]
model = down + [submodule] + up
self.model = nn.Sequential(*model)
def forward(self, x):
if self.outermost:
return self.model(x)
else:
return torch.cat([x, self.model(x)], 1)
class TOM(nn.Module):
""" Try-On Module """
def __init__(self, opt=None):
super(TOM, self).__init__()
if opt is None:
opt = Options()
# Input: [agnostic(3) + warped_design(3) + warped_mask(1) + features(19)] = 26 channels
self.unet = UnetGenerator(
input_nc=opt.tom_input_nc,
output_nc=opt.tom_output_nc, # [rendered(3) + mask(1)]
num_downs=6,
norm_layer=nn.InstanceNorm2d
)
def forward(self, x):
output = self.unet(x)
p_rendered, m_composite = torch.split(output, [3, 1], dim=1)
p_rendered = torch.tanh(p_rendered)
m_composite = torch.sigmoid(m_composite)
return p_rendered, m_composite
def save_checkpoint(model, save_path):
if not os.path.exists(os.path.dirname(save_path)):
os.makedirs(os.path.dirname(save_path))
torch.save(model.state_dict(), save_path)
def load_checkpoint(model, checkpoint_path, strict=True):
if not os.path.exists(checkpoint_path):
raise FileNotFoundError(f"Checkpoint file not found: {checkpoint_path}")
state_dict = torch.load(checkpoint_path, map_location=torch.device('cpu'))
model.load_state_dict(state_dict, strict=strict)