Spaces:
Running
Running
File size: 991 Bytes
ab9881b 37904b4 ab9881b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
import gradio as gr
from transformers import BlipProcessor, BlipForConditionalGeneration
from PIL import Image
import torch
# Load the BLIP model and processor
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
def generate_caption(image):
image = image.convert("RGB")
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
output = model.generate(**inputs)
caption = processor.decode(output[0], skip_special_tokens=True)
return caption
# Gradio interface
interface = gr.Interface(
fn=generate_caption,
inputs=gr.Image(type="pil", label="Upload an Image"),
outputs=gr.Textbox(label="Generated Caption"),
title="📸 Image Captioning",
description="Upload an image and get a descriptive caption using this model.",
allow_flagging="never"
)
if __name__ == "__main__":
interface.launch() |