Spaces:
Running
Running
import gradio as gr | |
import numpy as np | |
import torch | |
import cv2 | |
from PIL import Image | |
from torchvision import transforms | |
from cloth_segmentation.networks.u2net import U2NET | |
# Load U²-Net Model | |
model_path = "cloth_segmentation/networks/u2net.pth" | |
model = U2NET(3, 1) | |
state_dict = torch.load(model_path, map_location=torch.device('cpu')) | |
state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()} | |
model.load_state_dict(state_dict) | |
model.eval() | |
def segment_dress(image_np): | |
"""Segment the dress using U²-Net and GrabCut.""" | |
transform_pipeline = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Resize((320, 320)) | |
]) | |
image = Image.fromarray(image_np).convert("RGB") | |
input_tensor = transform_pipeline(image).unsqueeze(0) | |
with torch.no_grad(): | |
output = model(input_tensor)[0][0].squeeze().cpu().numpy() | |
u2net_mask = (output > 0.5).astype(np.uint8) * 255 | |
u2net_mask = cv2.resize(u2net_mask, (image_np.shape[1], image_np.shape[0]), interpolation=cv2.INTER_NEAREST) | |
# Apply GrabCut to refine the mask | |
mask = np.zeros(image_np.shape[:2], np.uint8) | |
mask[u2net_mask > 128] = cv2.GC_FGD | |
mask[u2net_mask <= 128] = cv2.GC_BGD | |
bg_model = np.zeros((1, 65), np.float64) | |
fg_model = np.zeros((1, 65), np.float64) | |
cv2.grabCut(image_np, mask, None, bg_model, fg_model, 5, cv2.GC_INIT_WITH_MASK) | |
mask = np.where((mask == 2) | (mask == 0), 0, 255).astype(np.uint8) | |
return mask | |
def recolor_dress(image_np, mask, target_color): | |
"""Recolor the dress while keeping texture, shadows, and designs.""" | |
# Convert to LAB color space | |
img_lab = cv2.cvtColor(image_np, cv2.COLOR_RGB2LAB) | |
# Target color in LAB | |
target_color_lab = cv2.cvtColor(np.uint8([[target_color]]), cv2.COLOR_BGR2LAB)[0][0] | |
# Preserve lightness (L) and change only chromatic channels (A & B) | |
blend_factor = 0.8 | |
img_lab[..., 1] = np.where(mask > 128, img_lab[..., 1] * (1 - blend_factor) + target_color_lab[1] * blend_factor, img_lab[..., 1]) | |
img_lab[..., 2] = np.where(mask > 128, img_lab[..., 2] * (1 - blend_factor) + target_color_lab[2] * blend_factor, img_lab[..., 2]) | |
# Convert back to RGB | |
img_recolored = cv2.cvtColor(img_lab, cv2.COLOR_LAB2RGB) | |
return img_recolored | |
def change_dress_color(image_path, color): | |
"""Change the dress color while preserving texture and design details.""" | |
if image_path is None: | |
return None | |
img = Image.open(image_path).convert("RGB") | |
img_np = np.array(img) | |
# Get dress segmentation mask | |
mask = segment_dress(img_np) | |
if mask is None: | |
return img # No dress detected | |
# Convert the selected color to BGR | |
color_map = { | |
"Red": (0, 0, 255), "Blue": (255, 0, 0), "Green": (0, 255, 0), "Yellow": (0, 255, 255), | |
"Purple": (128, 0, 128), "Orange": (0, 165, 255), "Cyan": (255, 255, 0), "Magenta": (255, 0, 255), | |
"White": (255, 255, 255), "Black": (0, 0, 0) | |
} | |
new_color_bgr = np.array(color_map.get(color, (0, 0, 255)), dtype=np.uint8) # Default to Red | |
# Apply recoloring logic | |
img_recolored = recolor_dress(img_np, mask, new_color_bgr) | |
return Image.fromarray(img_recolored) | |
# Gradio Interface | |
demo = gr.Interface( | |
fn=change_dress_color, | |
inputs=[ | |
gr.Image(type="filepath", label="Upload Dress Image"), | |
gr.Radio(["Red", "Blue", "Green", "Yellow", "Purple", "Orange", "Cyan", "Magenta", "White", "Black"], label="Choose New Dress Color") | |
], | |
outputs=gr.Image(type="pil", label="Color Changed Dress"), | |
title="Dress Color Changer", | |
description="Upload an image of a dress and select a new color to change its appearance naturally while preserving designs." | |
) | |
if __name__ == "__main__": | |
demo.launch() |