train_scrap / app.py
gaur3009's picture
Update app.py
157d2ac verified
raw
history blame
10.7 kB
import gradio as gr
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from diffusers import DiffusionPipeline
import requests
from bs4 import BeautifulSoup
import os
import time
import threading
from PIL import Image
import numpy as np
# ======================
# Configuration
# ======================
CONFIG = {
"scraping": {
"search_url": "https://www.pexels.com/search/{query}/",
"headers": {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"
},
"max_images": 100,
"progress_interval": 1
},
"training": {
"batch_size": 4,
"epochs": 10,
"lr": 0.0002,
"latent_dim": 100,
"img_size": 64,
"num_workers": 0,
"progress_interval": 0.5
},
"paths": {
"dataset_dir": "scraped_data",
"model_save": "text2img_model.pth"
}
}
# ======================
# Web Scraping Module
# ======================
class WebScraper:
def __init__(self):
self.stop_event = threading.Event()
self.scraped_data = []
self._lock = threading.Lock()
self.scraping_progress = 0
self.scraped_count = 0
self.total_images = 0
def __getstate__(self):
state = self.__dict__.copy()
del state['stop_event']
del state['_lock']
return state
def __setstate__(self, state):
self.__dict__.update(state)
self.stop_event = threading.Event()
self._lock = threading.Lock()
def scrape_images(self, query):
with self._lock:
self.scraping_progress = 0
self.scraped_count = 0
search_url = CONFIG["scraping"]["search_url"].format(query=query)
try:
response = requests.get(search_url, headers=CONFIG["scraping"]["headers"])
soup = BeautifulSoup(response.content, 'html.parser')
img_tags = soup.find_all('img', {'class': 'photo-item__img'})
self.total_images = min(len(img_tags), CONFIG["scraping"]["max_images"])
for idx, img in enumerate(img_tags[:CONFIG["scraping"]["max_images"]]):
if self.stop_event.is_set():
break
img_url = img['src']
try:
img_data = requests.get(img_url).content
img_name = f"{int(time.time())}_{idx}.jpg"
img_path = os.path.join(CONFIG["paths"]["dataset_dir"], img_name)
with open(img_path, 'wb') as f:
f.write(img_data)
self.scraped_data.append({"text": query, "image": img_path})
self.scraped_count = idx + 1
self.scraping_progress = (idx + 1) / self.total_images * 100
except Exception as e:
print(f"Error downloading image: {e}")
time.sleep(0.1) # Simulate download time
except Exception as e:
print(f"Scraping error: {e}")
finally:
self.scraping_progress = 100
def start_scraping(self, query):
self.stop_event.clear()
os.makedirs(CONFIG["paths"]["dataset_dir"], exist_ok=True)
thread = threading.Thread(target=self.scrape_images, args=(query,))
thread.start()
return "Scraping started..."
# ======================
# Dataset and Models
# ======================
class TextImageDataset(Dataset):
def __init__(self, data):
self.data = data
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
item = self.data[idx]
image = Image.open(item["image"]).convert('RGB')
image = torch.randn(3, 64, 64) # Simplified for example
return {"text": item["text"], "image": image}
class TextConditionedGenerator(nn.Module):
def __init__(self):
super().__init__()
self.text_embedding = nn.Embedding(1000, 128)
self.model = nn.Sequential(
nn.Linear(128 + 100, 256),
nn.LeakyReLU(0.2),
nn.Linear(256, 512),
nn.BatchNorm1d(512),
nn.LeakyReLU(0.2),
nn.Linear(512, 3*64*64),
nn.Tanh()
)
def forward(self, text, noise):
text_emb = self.text_embedding(text)
combined = torch.cat([text_emb, noise], 1)
return self.model(combined).view(-1, 3, 64, 64)
# ======================
# Training Utilities
# ======================
def train_model(scraper, progress=gr.Progress()):
if len(scraper.scraped_data) == 0:
return "Error: No images scraped! Scrape images first."
dataset = TextImageDataset(scraper.scraped_data)
dataloader = DataLoader(dataset,
batch_size=CONFIG["training"]["batch_size"],
shuffle=True)
generator = TextConditionedGenerator()
discriminator = nn.Sequential(
nn.Linear(3*64*64, 512),
nn.LeakyReLU(0.2),
nn.Linear(512, 1),
nn.Sigmoid()
)
optimizer_G = optim.Adam(generator.parameters(), lr=CONFIG["training"]["lr"])
optimizer_D = optim.Adam(discriminator.parameters(), lr=CONFIG["training"]["lr"])
criterion = nn.BCELoss()
total_batches = len(dataloader)
for epoch in progress.tqdm(range(CONFIG["training"]["epochs"]), desc="Epochs"):
for batch_idx, batch in enumerate(dataloader):
real_imgs = torch.randn(4, 3, 64, 64) # Simplified data
real_labels = torch.ones(real_imgs.size(0), 1)
noise = torch.randn(real_imgs.size(0), 100)
# Train discriminator
optimizer_D.zero_grad()
real_loss = criterion(discriminator(real_imgs.view(-1, 3*64*64)), real_labels)
fake_imgs = generator(torch.randint(0, 1000, (real_imgs.size(0),)), noise)
fake_loss = criterion(discriminator(fake_imgs.detach().view(-1, 3*64*64)), torch.zeros_like(real_labels))
d_loss = (real_loss + fake_loss) / 2
d_loss.backward()
optimizer_D.step()
# Train generator
optimizer_G.zero_grad()
g_loss = criterion(discriminator(fake_imgs.view(-1, 3*64*64)), torch.ones_like(real_labels))
g_loss.backward()
optimizer_G.step()
progress(
(epoch + (batch_idx+1)/total_batches) / CONFIG["training"]["epochs"],
desc=f"Epoch {epoch+1} | Batch {batch_idx+1}/{total_batches}",
unit="epoch"
)
torch.save(generator.state_dict(), CONFIG["paths"]["model_save"])
return f"Training complete! Used {len(dataset)} samples"
# ======================
# Gradio Interface
# ======================
def create_interface():
with gr.Blocks() as app:
scraper = gr.State(WebScraper)
model_runner = gr.State(ModelRunner)
with gr.Row():
with gr.Column():
query_input = gr.Textbox(label="Search Query")
scrape_btn = gr.Button("Start Scraping")
scrape_status = gr.Textbox(label="Scraping Status")
scraping_progress = gr.Textbox(label="Scraping Progress", value="0% (0/0)")
train_btn = gr.Button("Start Training")
training_status = gr.Textbox(label="Training Status")
training_progress = gr.Textbox(label="Training Progress", value="Not started")
with gr.Column():
prompt_input = gr.Textbox(label="Generation Prompt")
model_choice = gr.Radio(["Pretrained", "Custom"], label="Model Type", value="Pretrained")
generate_btn = gr.Button("Generate Image")
output_image = gr.Image(label="Generated Image")
# Real-time updates using event triggers
def update_scraping_progress(scraper):
return f"{scraper.scraping_progress:.1f}% ({scraper.scraped_count}/{scraper.total_images})"
def update_training_progress():
if os.path.exists(CONFIG["paths"]["model_save"]):
stats = os.stat(CONFIG["paths"]["model_save"])
return f"Model size: {stats.st_size//1024}KB"
return "No trained model"
# Set up periodic updates
scraping_progress.change(
update_scraping_progress,
inputs=[scraper],
outputs=[scraping_progress],
every=CONFIG["scraping"]["progress_interval"]
)
training_progress.change(
update_training_progress,
outputs=[training_progress],
every=CONFIG["training"]["progress_interval"]
)
# Event handlers
scrape_btn.click(
lambda s, q: s.start_scraping(q),
[scraper, query_input],
[scrape_status]
)
train_btn.click(
lambda s: train_model(s),
[scraper],
[training_status, training_progress]
)
generate_btn.click(
lambda p, m, r: generate_image(p, m, r),
[prompt_input, model_choice, model_runner],
[output_image]
)
return app
def generate_image(prompt, model_type, runner):
if model_type == "Pretrained":
pipe = runner.load_pretrained()
image = pipe(prompt).images[0]
else:
model = runner.load_custom()
noise = torch.randn(1, 100)
with torch.no_grad():
fake = model(torch.randint(0, 1000, (1,)), noise)
image = fake.squeeze().permute(1, 2, 0).numpy()
image = (image + 1) / 2
return Image.fromarray((image * 255).astype(np.uint8))
class ModelRunner:
def __init__(self):
self.pretrained_pipe = None
def load_pretrained(self):
if not self.pretrained_pipe:
self.pretrained_pipe = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0"
)
return self.pretrained_pipe
def load_custom(self):
model = TextConditionedGenerator()
model.load_state_dict(torch.load(CONFIG["paths"]["model_save"], map_location='cpu'))
return model
if __name__ == "__main__":
interface = create_interface()
interface.launch()