train_scrap / app.py
gaur3009's picture
Create app.py
07f6f3d verified
raw
history blame
8.7 kB
import gradio as gr
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from diffusers import DiffusionPipeline
import requests
from bs4 import BeautifulSoup
import os
import time
import threading
from PIL import Image
import io
import numpy as np
# ======================
# Configuration
# ======================
CONFIG = {
"scraping": {
"search_url": "https://www.pexels.com/search/{query}/",
"headers": {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"
},
"max_images": 100,
"scrape_time": 10 # 3 hours in seconds (simulated for testing)
},
"training": {
"batch_size": 4,
"epochs": 10,
"lr": 0.0002,
"latent_dim": 100,
"img_size": 64,
"num_workers": 0
},
"paths": {
"dataset_dir": "scraped_data",
"model_save": "text2img_model.pth"
}
}
# ======================
# Web Scraping Module
# ======================
class WebScraper:
def __init__(self):
self.stop_event = threading.Event()
self.scraped_data = []
def scrape_images(self, query):
search_url = CONFIG["scraping"]["search_url"].format(query=query)
try:
response = requests.get(search_url, headers=CONFIG["scraping"]["headers"])
soup = BeautifulSoup(response.content, 'html.parser')
# Extract image URLs (example selector - needs adjustment for actual site)
img_tags = soup.find_all('img', {'class': 'photo-item__img'})
for img in img_tags[:CONFIG["scraping"]["max_images"]]:
if self.stop_event.is_set():
break
img_url = img['src']
try:
img_data = requests.get(img_url).content
img_name = f"{int(time.time())}.jpg"
img_path = os.path.join(CONFIG["paths"]["dataset_dir"], img_name)
with open(img_path, 'wb') as f:
f.write(img_data)
# Store text-image pair (text = query)
self.scraped_data.append({"text": query, "image": img_path})
except Exception as e:
print(f"Error downloading image: {e}")
except Exception as e:
print(f"Scraping error: {e}")
def start_scraping(self, query):
self.stop_event.clear()
if not os.path.exists(CONFIG["paths"]["dataset_dir"]):
os.makedirs(CONFIG["paths"]["dataset_dir"])
thread = threading.Thread(target=self.scrape_images, args=(query,))
thread.start()
return "Scraping started..."
# ======================
# Dataset and Models
# ======================
class TextImageDataset(Dataset):
def __init__(self, data, transform=None):
self.data = data
self.transform = transform
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
item = self.data[idx]
image = Image.open(item["image"]).convert('RGB')
if self.transform:
image = self.transform(image)
return {"text": item["text"], "image": image}
# Simplified Text-to-Image Generator
class TextConditionedGenerator(nn.Module):
def __init__(self):
super().__init__()
self.text_embedding = nn.Embedding(1000, 128) # Simplified text embedding
self.model = nn.Sequential(
nn.Linear(128 + CONFIG["training"]["latent_dim"], 256),
nn.LeakyReLU(0.2),
nn.Linear(256, 512),
nn.BatchNorm1d(512),
nn.LeakyReLU(0.2),
nn.Linear(512, 3 * CONFIG["training"]["img_size"] ** 2),
nn.Tanh()
)
def forward(self, text, noise):
text_emb = self.text_embedding(text)
combined = torch.cat([text_emb, noise], 1)
img = self.model(combined)
return img.view(-1, 3, CONFIG["training"]["img_size"], CONFIG["training"]["img_size"])
# ======================
# Training Utilities
# ======================
def train_model(scraper, progress=gr.Progress()):
dataset = TextImageDataset(scraper.scraped_data)
dataloader = DataLoader(dataset, batch_size=CONFIG["training"]["batch_size"], shuffle=True)
generator = TextConditionedGenerator()
discriminator = nn.Sequential(
nn.Linear(3 * CONFIG["training"]["img_size"] ** 2, 512),
nn.LeakyReLU(0.2),
nn.Linear(512, 1),
nn.Sigmoid()
)
optimizer_G = optim.Adam(generator.parameters(), lr=CONFIG["training"]["lr"])
optimizer_D = optim.Adam(discriminator.parameters(), lr=CONFIG["training"]["lr"])
criterion = nn.BCELoss()
for epoch in progress.tqdm(range(CONFIG["training"]["epochs"]), desc="Training"):
for i, batch in enumerate(dataloader):
# Train discriminator
real_imgs = batch["image"]
real_labels = torch.ones(real_imgs.size(0), 1)
noise = torch.randn(real_imgs.size(0), CONFIG["training"]["latent_dim"])
fake_imgs = generator(torch.randint(0, 1000, (real_imgs.size(0),)), noise)
fake_labels = torch.zeros(real_imgs.size(0), 1)
optimizer_D.zero_grad()
real_loss = criterion(discriminator(real_imgs.view(-1, 3*64**2)), real_labels)
fake_loss = criterion(discriminator(fake_imgs.detach().view(-1, 3*64**2)), fake_labels)
d_loss = real_loss + fake_loss
d_loss.backward()
optimizer_D.step()
# Train generator
optimizer_G.zero_grad()
validity = discriminator(fake_imgs.view(-1, 3*64**2))
g_loss = criterion(validity, torch.ones_like(validity))
g_loss.backward()
optimizer_G.step()
torch.save(generator.state_dict(), CONFIG["paths"]["model_save"])
return "Training completed!"
# ======================
# Inference Modules
# ======================
class ModelRunner:
def __init__(self):
self.pretrained_pipe = None
self.custom_model = None
def load_pretrained(self):
if self.pretrained_pipe is None:
self.pretrained_pipe = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0"
)
return self.pretrained_pipe
def load_custom(self):
if self.custom_model is None:
model = TextConditionedGenerator()
model.load_state_dict(torch.load(CONFIG["paths"]["model_save"]))
self.custom_model = model
return self.custom_model
# ======================
# Gradio Interface
# ======================
with gr.Blocks() as app:
scraper = WebScraper()
model_runner = ModelRunner()
with gr.Row():
with gr.Column():
query_input = gr.Textbox(label="Search Query")
scrape_btn = gr.Button("Start Scraping")
scrape_status = gr.Textbox(label="Scraping Status")
train_btn = gr.Button("Start Training")
training_status = gr.Textbox(label="Training Status")
with gr.Column():
prompt_input = gr.Textbox(label="Generation Prompt")
model_choice = gr.Radio(["Pretrained", "Custom"], label="Model Type")
generate_btn = gr.Button("Generate Image")
output_image = gr.Image(label="Generated Image")
# Event Handlers
scrape_btn.click(
fn=scraper.start_scraping,
inputs=query_input,
outputs=scrape_status
)
train_btn.click(
fn=train_model,
inputs=[scraper],
outputs=training_status
)
generate_btn.click(
fn=lambda prompt, model_type: generate_image(prompt, model_type, model_runner),
inputs=[prompt_input, model_choice],
outputs=output_image
)
def generate_image(prompt, model_type, runner):
if model_type == "Pretrained":
pipe = runner.load_pretrained()
image = pipe(prompt).images[0]
else:
model = runner.load_custom()
# Simplified generation process
noise = torch.randn(1, CONFIG["training"]["latent_dim"])
fake = model(torch.randint(0, 1000, (1,)), noise).detach()
image = fake.squeeze().permute(1,2,0).numpy()
image = (image + 1) / 2 # Scale to [0,1]
return Image.fromarray((image * 255).astype(np.uint8))
if __name__ == "__main__":
app.launch()