gaurav2003's picture
Create app.py
ffc9684 verified
import torch
import gradio as gr
from peft import PeftModel
from transformers import AutoTokenizer, AutoModelForCausalLM
# Base model and your LoRA adapter
base_model = "mistralai/Mistral-7B-Instruct-v0.1"
adapter_repo = "gaurav2003/room-service-chatbot"
# Load tokenizer and base model
tokenizer = AutoTokenizer.from_pretrained(base_model)
model = AutoModelForCausalLM.from_pretrained(
base_model,
torch_dtype=torch.float16,
device_map="auto"
)
# Load your LoRA adapter
model = PeftModel.from_pretrained(model, adapter_repo)
model.eval()
# Chat function
def generate_response(message, history):
input_text = message
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(**inputs, max_new_tokens=512)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# Gradio Interface
chatbot = gr.ChatInterface(fn=generate_response, title="Room Service Chatbot")
if __name__ == "__main__":
chatbot.launch()