Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
from peft import PeftModel | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
# Base model and your LoRA adapter | |
base_model = "mistralai/Mistral-7B-Instruct-v0.1" | |
adapter_repo = "gaurav2003/room-service-chatbot" | |
# Load tokenizer and base model | |
tokenizer = AutoTokenizer.from_pretrained(base_model) | |
model = AutoModelForCausalLM.from_pretrained( | |
base_model, | |
torch_dtype=torch.float16, | |
device_map="auto" | |
) | |
# Load your LoRA adapter | |
model = PeftModel.from_pretrained(model, adapter_repo) | |
model.eval() | |
# Chat function | |
def generate_response(message, history): | |
input_text = message | |
inputs = tokenizer(input_text, return_tensors="pt").to(model.device) | |
with torch.no_grad(): | |
outputs = model.generate(**inputs, max_new_tokens=512) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
# Gradio Interface | |
chatbot = gr.ChatInterface(fn=generate_response, title="Room Service Chatbot") | |
if __name__ == "__main__": | |
chatbot.launch() | |