Spaces:
Running
Running
File size: 6,558 Bytes
7f0f123 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import gradio as gr
import os
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
import tempfile
import io
from depth_anything.dpt import DepthAnything_AC
def normalize_depth(disparity_tensor):
"""Standard normalization method to convert disparity to depth"""
eps = 1e-6
disparity_min = disparity_tensor.min()
disparity_max = disparity_tensor.max()
normalized_disparity = (disparity_tensor - disparity_min) / (disparity_max - disparity_min + eps)
return normalized_disparity
def load_model(model_path='checkpoints/depth_anything_AC_vits.pth', encoder='vits'):
"""Load trained depth estimation model"""
model_configs = {
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024], 'version': 'v2'},
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768], 'version': 'v2'},
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384], 'version': 'v2'}
}
model = DepthAnything_AC(model_configs[encoder])
if os.path.exists(model_path):
checkpoint = torch.load(model_path, map_location='cpu')
model.load_state_dict(checkpoint, strict=False)
else:
print(f"Warning: Model file {model_path} not found")
model.eval()
if torch.cuda.is_available():
model.cuda()
return model
def preprocess_image(image, target_size=518):
"""Preprocess input image"""
if isinstance(image, Image.Image):
image = np.array(image)
if len(image.shape) == 3 and image.shape[2] == 3:
pass
elif len(image.shape) == 3 and image.shape[2] == 4:
image = image[:, :, :3]
image = image.astype(np.float32) / 255.0
h, w = image.shape[:2]
scale = target_size / min(h, w)
new_h, new_w = int(h * scale), int(w * scale)
new_h = ((new_h + 13) // 14) * 14
new_w = ((new_w + 13) // 14) * 14
image = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_CUBIC)
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
image = (image - mean) / std
image = torch.from_numpy(image.transpose(2, 0, 1)).float()
image = image.unsqueeze(0)
return image, (h, w)
def postprocess_depth(depth_tensor, original_size):
"""Post-process depth map"""
if depth_tensor.dim() == 3:
depth_tensor = depth_tensor.unsqueeze(1)
elif depth_tensor.dim() == 2:
depth_tensor = depth_tensor.unsqueeze(0).unsqueeze(1)
h, w = original_size
depth = F.interpolate(depth_tensor, size=(h, w), mode='bilinear', align_corners=True)
depth = depth.squeeze().cpu().numpy()
return depth
def create_colored_depth_map(depth, colormap='spectral'):
"""Create colored depth map"""
if colormap == 'inferno':
depth_colored = cv2.applyColorMap((depth * 255).astype(np.uint8), cv2.COLORMAP_INFERNO)
depth_colored = cv2.cvtColor(depth_colored, cv2.COLOR_BGR2RGB)
elif colormap == 'spectral':
from matplotlib import cm
spectral_cmap = cm.get_cmap('Spectral_r')
depth_colored = (spectral_cmap(depth) * 255).astype(np.uint8)
depth_colored = depth_colored[:, :, :3]
else:
depth_colored = (depth * 255).astype(np.uint8)
depth_colored = np.stack([depth_colored] * 3, axis=2)
return depth_colored
print("Loading model...")
model = load_model()
print("Model loaded successfully!")
def predict_depth(input_image, colormap_choice):
"""Main depth prediction function"""
try:
image_tensor, original_size = preprocess_image(input_image)
if torch.cuda.is_available():
image_tensor = image_tensor.cuda()
with torch.no_grad():
prediction = model(image_tensor)
disparity_tensor = prediction['out']
depth_tensor = normalize_depth(disparity_tensor)
depth = postprocess_depth(depth_tensor, original_size)
depth_colored = create_colored_depth_map(depth, colormap_choice.lower())
return Image.fromarray(depth_colored)
except Exception as e:
print(f"Error during inference: {str(e)}")
return None
with gr.Blocks(title="Depth Anything AC - Depth Estimation Demo", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π Depth Anything AC - Depth Estimation Demo
Upload an image and AI will generate the corresponding depth map! Different colors in the depth map represent different distances, allowing you to see the three-dimensional structure of the image.
## How to Use
1. Click the upload area to select an image
2. Choose your preferred colormap style
3. Click the "Generate Depth Map" button
4. View the results and download
""")
with gr.Row():
with gr.Column():
input_image = gr.Image(
label="Upload Image",
type="pil",
height=400
)
colormap_choice = gr.Dropdown(
choices=["Spectral", "Inferno", "Gray"],
value="Spectral",
label="Colormap"
)
submit_btn = gr.Button(
"π― Generate Depth Map",
variant="primary",
size="lg"
)
with gr.Column():
output_image = gr.Image(
label="Depth Map Result",
type="pil",
height=400
)
gr.Examples(
examples=[
["toyset/1.png", "Spectral"],
["toyset/2.png", "Spectral"],
["toyset/good.png", "Spectral"],
] if os.path.exists("toyset") else [],
inputs=[input_image, colormap_choice],
outputs=output_image,
fn=predict_depth,
cache_examples=False,
label="Try these example images"
)
submit_btn.click(
fn=predict_depth,
inputs=[input_image, colormap_choice],
outputs=output_image,
show_progress=True
)
gr.Markdown("""
## π Notes
- **Spectral**: Rainbow spectrum with distinct near-far contrast
- **Inferno**: Flame spectrum with warm tones
- **Gray**: Grayscale with classic effect
""")
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True
) |