File size: 6,558 Bytes
7f0f123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import gradio as gr
import os
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
import tempfile
import io

from depth_anything.dpt import DepthAnything_AC


def normalize_depth(disparity_tensor):
    """Standard normalization method to convert disparity to depth"""
    eps = 1e-6
    disparity_min = disparity_tensor.min()
    disparity_max = disparity_tensor.max()
    normalized_disparity = (disparity_tensor - disparity_min) / (disparity_max - disparity_min + eps)
    return normalized_disparity


def load_model(model_path='checkpoints/depth_anything_AC_vits.pth', encoder='vits'):
    """Load trained depth estimation model"""
    model_configs = {
        'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024], 'version': 'v2'},
        'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768], 'version': 'v2'},
        'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384], 'version': 'v2'}
    }
    
    model = DepthAnything_AC(model_configs[encoder])
    
    if os.path.exists(model_path):
        checkpoint = torch.load(model_path, map_location='cpu')
        model.load_state_dict(checkpoint, strict=False)
    else:
        print(f"Warning: Model file {model_path} not found")
        
    model.eval()
    if torch.cuda.is_available():
        model.cuda()
    
    return model


def preprocess_image(image, target_size=518):
    """Preprocess input image"""
    if isinstance(image, Image.Image):
        image = np.array(image)
    
    if len(image.shape) == 3 and image.shape[2] == 3:
        pass
    elif len(image.shape) == 3 and image.shape[2] == 4:
        image = image[:, :, :3]
    
    image = image.astype(np.float32) / 255.0
    h, w = image.shape[:2]
    scale = target_size / min(h, w)
    new_h, new_w = int(h * scale), int(w * scale)
    
    new_h = ((new_h + 13) // 14) * 14
    new_w = ((new_w + 13) // 14) * 14
    image = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_CUBIC)

    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    image = (image - mean) / std

    image = torch.from_numpy(image.transpose(2, 0, 1)).float()
    image = image.unsqueeze(0)
    
    return image, (h, w)


def postprocess_depth(depth_tensor, original_size):
    """Post-process depth map"""
    if depth_tensor.dim() == 3:
        depth_tensor = depth_tensor.unsqueeze(1)
    elif depth_tensor.dim() == 2:
        depth_tensor = depth_tensor.unsqueeze(0).unsqueeze(1)
    
    h, w = original_size
    depth = F.interpolate(depth_tensor, size=(h, w), mode='bilinear', align_corners=True)
    depth = depth.squeeze().cpu().numpy()
    
    return depth


def create_colored_depth_map(depth, colormap='spectral'):
    """Create colored depth map"""
    if colormap == 'inferno':
        depth_colored = cv2.applyColorMap((depth * 255).astype(np.uint8), cv2.COLORMAP_INFERNO)
        depth_colored = cv2.cvtColor(depth_colored, cv2.COLOR_BGR2RGB)
    elif colormap == 'spectral':
        from matplotlib import cm
        spectral_cmap = cm.get_cmap('Spectral_r')
        depth_colored = (spectral_cmap(depth) * 255).astype(np.uint8)
        depth_colored = depth_colored[:, :, :3]
    else:
        depth_colored = (depth * 255).astype(np.uint8)
        depth_colored = np.stack([depth_colored] * 3, axis=2)
    
    return depth_colored


print("Loading model...")
model = load_model()
print("Model loaded successfully!")


def predict_depth(input_image, colormap_choice):
    """Main depth prediction function"""
    try:
        image_tensor, original_size = preprocess_image(input_image)
        
        if torch.cuda.is_available():
            image_tensor = image_tensor.cuda()
        
        with torch.no_grad():
            prediction = model(image_tensor)
            disparity_tensor = prediction['out']
            depth_tensor = normalize_depth(disparity_tensor)
        
        depth = postprocess_depth(depth_tensor, original_size)
        
        depth_colored = create_colored_depth_map(depth, colormap_choice.lower())
        
        return Image.fromarray(depth_colored)
        
    except Exception as e:
        print(f"Error during inference: {str(e)}")
        return None


with gr.Blocks(title="Depth Anything AC - Depth Estimation Demo", theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    # 🌊 Depth Anything AC - Depth Estimation Demo
    
    Upload an image and AI will generate the corresponding depth map! Different colors in the depth map represent different distances, allowing you to see the three-dimensional structure of the image.
    
    ## How to Use
    1. Click the upload area to select an image
    2. Choose your preferred colormap style
    3. Click the "Generate Depth Map" button
    4. View the results and download
    """)
    
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(
                label="Upload Image",
                type="pil",
                height=400
            )
            
            colormap_choice = gr.Dropdown(
                choices=["Spectral", "Inferno", "Gray"],
                value="Spectral",
                label="Colormap"
            )
            
            submit_btn = gr.Button(
                "🎯 Generate Depth Map",
                variant="primary",
                size="lg"
            )
            
        with gr.Column():
            output_image = gr.Image(
                label="Depth Map Result",
                type="pil",
                height=400
            )
    
    gr.Examples(
        examples=[
            ["toyset/1.png", "Spectral"],
            ["toyset/2.png", "Spectral"],
            ["toyset/good.png", "Spectral"],
        ] if os.path.exists("toyset") else [],
        inputs=[input_image, colormap_choice],
        outputs=output_image,
        fn=predict_depth,
        cache_examples=False,
        label="Try these example images"
    )
    
    submit_btn.click(
        fn=predict_depth,
        inputs=[input_image, colormap_choice],
        outputs=output_image,
        show_progress=True
    )
    
    gr.Markdown("""
    ## πŸ“ Notes
    - **Spectral**: Rainbow spectrum with distinct near-far contrast
    - **Inferno**: Flame spectrum with warm tones
    - **Gray**: Grayscale with classic effect
    """)


if __name__ == "__main__":
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        show_error=True
    )