File size: 10,675 Bytes
7f0f123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchhub.facebookresearch_dinov2_main.hubconf as dinov2

from depth_anything.util.blocksv2 import FeatureFusionBlock, _make_scratch
from torchvision.transforms import Compose
from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet
import cv2
import numpy as np

def _make_fusion_block(features, use_bn, size = None):
    return FeatureFusionBlock(
        features,
        nn.ReLU(False),
        deconv=False,
        bn=use_bn,
        expand=False,
        align_corners=True,
        size=size,
    )


class DPTHead(nn.Module):
    def __init__(self, nclass, in_channels, features=256, use_bn=False, out_channels=[256, 512, 1024, 1024], use_clstoken=False):
        super(DPTHead, self).__init__()
        
        self.nclass = nclass
        self.use_clstoken = use_clstoken
        
        self.projects = nn.ModuleList([
            nn.Conv2d(
                in_channels=in_channels,
                out_channels=out_channel,
                kernel_size=1,
                stride=1,
                padding=0,
            ) for out_channel in out_channels
        ])
        
        self.resize_layers = nn.ModuleList([
            nn.ConvTranspose2d(
                in_channels=out_channels[0],
                out_channels=out_channels[0],
                kernel_size=4,
                stride=4,
                padding=0),
            nn.ConvTranspose2d(
                in_channels=out_channels[1],
                out_channels=out_channels[1],
                kernel_size=2,
                stride=2,
                padding=0),
            nn.Identity(),
            nn.Conv2d(
                in_channels=out_channels[3],
                out_channels=out_channels[3],
                kernel_size=3,
                stride=2,
                padding=1)
        ])
        
        if use_clstoken:
            self.readout_projects = nn.ModuleList()
            for _ in range(len(self.projects)):
                self.readout_projects.append(
                    nn.Sequential(
                        nn.Linear(2 * in_channels, in_channels),
                        nn.GELU()))
        
        self.scratch = _make_scratch(
            out_channels,
            features,
            groups=1,
            expand=False,
        )

        self.scratch.stem_transpose = nn.Identity()
        
        self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
        self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
        self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
        self.scratch.refinenet4 = _make_fusion_block(features, use_bn)

        head_features_1 = features
        head_features_2 = 32
        
        if nclass > 1:
            self.scratch.output_conv = nn.Sequential(
                nn.Conv2d(head_features_1, head_features_1, kernel_size=3, stride=1, padding=1),
                nn.ReLU(True),
                nn.Conv2d(head_features_1, nclass, kernel_size=1, stride=1, padding=0),
            )
        else:
            self.scratch.output_conv1 = nn.Conv2d(head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1)
            
            self.scratch.output_conv2 = nn.Sequential(
                nn.Conv2d(head_features_1 // 2, head_features_2, kernel_size=3, stride=1, padding=1),
                nn.ReLU(True),
                nn.Conv2d(head_features_2, 1, kernel_size=1, stride=1, padding=0),
                nn.ReLU(True),
                nn.Identity(),
            )
       
    def forward(self, out_features, patch_h, patch_w,need_fp=False,need_prior=False,teacher_features=None,alpha=0.8):
        depth_out={}
        out = []
        for i, x in enumerate(out_features):
            if self.use_clstoken:
                x, cls_token = x[0], x[1]
                readout = cls_token.unsqueeze(1).expand_as(x)
                x = self.readout_projects[i](torch.cat((x, readout), -1))
            else:
                x = x[0]
            x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w)).contiguous()
            
            x = self.projects[i](x)
            x = self.resize_layers[i](x)
            
            out.append(x)
            
        layer_1, layer_2, layer_3, layer_4 = out
        
        layer_1_rn = self.scratch.layer1_rn(layer_1)
        layer_2_rn = self.scratch.layer2_rn(layer_2)
        layer_3_rn = self.scratch.layer3_rn(layer_3)
        layer_4_rn = self.scratch.layer4_rn(layer_4)
    
        path_4 = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:])
        path_3 = self.scratch.refinenet3(path_4, layer_3_rn, size=layer_2_rn.shape[2:])
        path_2 = self.scratch.refinenet2(path_3, layer_2_rn, size=layer_1_rn.shape[2:])
        path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
        
        out = self.scratch.output_conv1(path_1)
        out = F.interpolate(out, (int(patch_h * 14), int(patch_w * 14)), mode="bilinear", align_corners=True)
        out = self.scratch.output_conv2(out)

        depth_out['out']=out
        
        return depth_out
        
        
class DPT_DINOv2(nn.Module):
    def __init__(self, encoder='vitl', features=256, out_channels=[256, 512, 1024, 1024], use_bn=False, use_clstoken=False, localhub=True, version='v1'):
        super(DPT_DINOv2, self).__init__()
        
        assert encoder in ['vits', 'vitb', 'vitl']
        self.intermediate_layer_idx = {
            'vits': [2, 5, 8, 11],
            'vitb': [2, 5, 8, 11], 
            'vitl': [4, 11, 17, 23], 
            'vitg': [9, 19, 29, 39]
        }
        self.encoder = encoder
        self.version = version
        # in case the Internet connection is not stable, please load the DINOv2 locally
        # if localhub:
        #     self.pretrained = torch.hub.load('torchhub/facebookresearch_dinov2_main', 'dinov2_{:}14'.format(encoder), source='local', pretrained=True)
        # else:
        #     self.pretrained = torch.hub.load('facebookresearch/dinov2', 'dinov2_{:}14'.format(encoder))
        self.pretrained = dinov2.__dict__['dinov2_{:}14'.format(encoder)](pretrained=True)
        
        dim = self.pretrained.blocks[0].attn.qkv.in_features
        
        self.depth_head = DPTHead(1, dim, features, use_bn, out_channels=out_channels, use_clstoken=use_clstoken)

        
    def forward(self, x,need_fp=False,teacher_features=None,alpha=0.8,prior_mode='teacher'):
        depth_out={}
        h, w = x.shape[-2:]
        if self.version == 'v1':
            features = self.pretrained.get_intermediate_layers(x, 4, return_class_token=True)
        else:

            features = self.pretrained.get_intermediate_layers(x, self.intermediate_layer_idx[self.encoder], return_class_token=True)
        patch_h, patch_w = h // 14, w // 14
        
        depth_all = self.depth_head(features, patch_h, patch_w,need_fp,teacher_features,alpha)
        depth=depth_all['out']
        depth = F.interpolate(depth, size=(h, w), mode="bilinear", align_corners=True)
        depth = F.relu(depth).squeeze(1)
        depth_out['out']=depth

        return depth_out


class DepthAnything_AC(DPT_DINOv2):
    def __init__(self, config):
        super().__init__(**config)


    def get_intermediate_features(self, x):
        """
        Extract intermediate features from the model
        
        Args:
            x: Input tensor of shape (B, C, H, W)
            
        Returns:
            dict: Dictionary containing intermediate features including:
                - encoder_features: List of encoder feature maps
                - decoder_features: List of decoder feature maps  
                - decoder_features_path: List of decoder path features
                - cls_token: List of classification tokens
        """
        features = {
            'encoder_features': [],
            'decoder_features': [],
            'decoder_features_path': [],
            'cls_token': []
        }
        
        h, w = x.shape[-2:]
        patch_h, patch_w = h // 14, w // 14
      
        all_features = []
        for i in range(len(self.pretrained.blocks)):
            feat = self.pretrained.get_intermediate_layers(x, [i], return_class_token=True)[0]
            all_features.append(feat)
            if i in [2, 5, 8, 11]: 
                feat_map = feat[0]  
                B, N, C = feat_map.shape
                H = W = int(np.sqrt(N))
                features['encoder_features'].append(feat_map.reshape(B, H, W, C).permute(0, 3, 1, 2))
        
        out_features = []
        for layer_idx in self.intermediate_layer_idx[self.encoder]:
            out_features.append(all_features[layer_idx])
        out = []
        for i, feat in enumerate(out_features):
            if self.depth_head.use_clstoken:
                feat_map, cls_token = feat[0], feat[1]
                readout = cls_token.unsqueeze(1).expand_as(feat_map)
                feat_map = self.depth_head.readout_projects[i](torch.cat((feat_map, readout), -1))
                features['cls_token'].append(cls_token)
            else:
                feat_map = feat[0]
            feat_map = feat_map.permute(0, 2, 1).reshape((feat_map.shape[0], feat_map.shape[-1], patch_h, patch_w)).contiguous()
            
            feat_map = self.depth_head.projects[i](feat_map)
            feat_map = self.depth_head.resize_layers[i](feat_map)
            
            out.append(feat_map)
        
        layer_1, layer_2, layer_3, layer_4 = out
        
        layer_1_rn = self.depth_head.scratch.layer1_rn(layer_1)
        layer_2_rn = self.depth_head.scratch.layer2_rn(layer_2)
        layer_3_rn = self.depth_head.scratch.layer3_rn(layer_3)
        layer_4_rn = self.depth_head.scratch.layer4_rn(layer_4)
            
        features['decoder_features'].append(layer_1_rn)
        features['decoder_features'].append(layer_2_rn)
        features['decoder_features'].append(layer_3_rn)
        features['decoder_features'].append(layer_4_rn)

        path_4 = self.depth_head.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:])
        path_3 = self.depth_head.scratch.refinenet3(path_4, layer_3_rn, size=layer_2_rn.shape[2:])
        path_2 = self.depth_head.scratch.refinenet2(path_3, layer_2_rn, size=layer_1_rn.shape[2:])
        path_1 = self.depth_head.scratch.refinenet1(path_2, layer_1_rn)

        features['decoder_features_path'].append(path_1)
        features['decoder_features_path'].append(path_2)
        features['decoder_features_path'].append(path_3)
        features['decoder_features_path'].append(path_4)
        
        return features