Spaces:
Running
Running
import gradio as gr | |
import os | |
import cv2 | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from PIL import Image | |
import tempfile | |
import io | |
from tqdm import tqdm | |
from depth_anything.dpt import DepthAnything_AC | |
def normalize_depth(disparity_tensor): | |
"""Standard normalization method to convert disparity to depth""" | |
eps = 1e-6 | |
disparity_min = disparity_tensor.min() | |
disparity_max = disparity_tensor.max() | |
normalized_disparity = (disparity_tensor - disparity_min) / (disparity_max - disparity_min + eps) | |
return normalized_disparity | |
def load_model(model_path='checkpoints/depth_anything_AC_vits.pth', encoder='vits'): | |
"""Load trained depth estimation model""" | |
model_configs = { | |
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024], 'version': 'v2'}, | |
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768], 'version': 'v2'}, | |
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384], 'version': 'v2'} | |
} | |
model = DepthAnything_AC(model_configs[encoder]) | |
if os.path.exists(model_path): | |
checkpoint = torch.load(model_path, map_location='cpu') | |
model.load_state_dict(checkpoint, strict=False) | |
else: | |
print(f"Warning: Model file {model_path} not found") | |
model.eval() | |
if torch.cuda.is_available(): | |
model.cuda() | |
return model | |
def preprocess_image(image, target_size=518): | |
"""Preprocess input image""" | |
if isinstance(image, Image.Image): | |
image = np.array(image) | |
if len(image.shape) == 3 and image.shape[2] == 3: | |
pass | |
elif len(image.shape) == 3 and image.shape[2] == 4: | |
image = image[:, :, :3] | |
image = image.astype(np.float32) / 255.0 | |
h, w = image.shape[:2] | |
scale = target_size / min(h, w) | |
new_h, new_w = int(h * scale), int(w * scale) | |
new_h = ((new_h + 13) // 14) * 14 | |
new_w = ((new_w + 13) // 14) * 14 | |
image = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_CUBIC) | |
mean = np.array([0.485, 0.456, 0.406]) | |
std = np.array([0.229, 0.224, 0.225]) | |
image = (image - mean) / std | |
image = torch.from_numpy(image.transpose(2, 0, 1)).float() | |
image = image.unsqueeze(0) | |
return image, (h, w) | |
def preprocess_image_from_array(image_array, target_size=518): | |
"""Preprocess input image from numpy array (for video frames)""" | |
if len(image_array.shape) == 3 and image_array.shape[2] == 3: | |
# Convert BGR to RGB if needed | |
image = cv2.cvtColor(image_array, cv2.COLOR_BGR2RGB).astype(np.float32) / 255.0 | |
else: | |
image = image_array.astype(np.float32) / 255.0 | |
h, w = image.shape[:2] | |
scale = target_size / min(h, w) | |
new_h, new_w = int(h * scale), int(w * scale) | |
new_h = ((new_h + 13) // 14) * 14 | |
new_w = ((new_w + 13) // 14) * 14 | |
image = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_CUBIC) | |
mean = np.array([0.485, 0.456, 0.406]) | |
std = np.array([0.229, 0.224, 0.225]) | |
image = (image - mean) / std | |
image = torch.from_numpy(image.transpose(2, 0, 1)).float() | |
image = image.unsqueeze(0) | |
return image, (h, w) | |
def postprocess_depth(depth_tensor, original_size): | |
"""Post-process depth map""" | |
if depth_tensor.dim() == 3: | |
depth_tensor = depth_tensor.unsqueeze(1) | |
elif depth_tensor.dim() == 2: | |
depth_tensor = depth_tensor.unsqueeze(0).unsqueeze(1) | |
h, w = original_size | |
depth = F.interpolate(depth_tensor, size=(h, w), mode='bilinear', align_corners=True) | |
depth = depth.squeeze().cpu().numpy() | |
return depth | |
def create_colored_depth_map(depth, colormap='spectral'): | |
"""Create colored depth map""" | |
if colormap == 'inferno': | |
depth_colored = cv2.applyColorMap((depth * 255).astype(np.uint8), cv2.COLORMAP_INFERNO) | |
depth_colored = cv2.cvtColor(depth_colored, cv2.COLOR_BGR2RGB) | |
elif colormap == 'spectral': | |
from matplotlib import cm | |
spectral_cmap = cm.get_cmap('Spectral_r') | |
depth_colored = (spectral_cmap(depth) * 255).astype(np.uint8) | |
depth_colored = depth_colored[:, :, :3] | |
else: | |
depth_colored = (depth * 255).astype(np.uint8) | |
depth_colored = np.stack([depth_colored] * 3, axis=2) | |
return depth_colored | |
def is_video_file(filepath): | |
"""Check if the given file is a video file based on its extension""" | |
video_extensions = ['.mp4', '.avi', '.mov', '.mkv', '.flv', '.wmv', '.webm', '.m4v'] | |
_, ext = os.path.splitext(filepath.lower()) | |
return ext in video_extensions | |
print("Loading model...") | |
model = load_model() | |
print("Model loaded successfully!") | |
def predict_depth(input_image, colormap_choice): | |
"""Main depth prediction function for images""" | |
try: | |
image_tensor, original_size = preprocess_image(input_image) | |
if torch.cuda.is_available(): | |
image_tensor = image_tensor.cuda() | |
with torch.no_grad(): | |
prediction = model(image_tensor) | |
disparity_tensor = prediction['out'] | |
depth_tensor = normalize_depth(disparity_tensor) | |
depth = postprocess_depth(depth_tensor, original_size) | |
depth_colored = create_colored_depth_map(depth, colormap_choice.lower()) | |
return Image.fromarray(depth_colored) | |
except Exception as e: | |
print(f"Error during image inference: {str(e)}") | |
return None | |
def clear_results(): | |
"""Clear the output image""" | |
return None | |
def predict_video_depth(input_video, colormap_choice, progress=gr.Progress()): | |
"""Main depth prediction function for videos""" | |
if input_video is None: | |
return None | |
try: | |
print(f"Starting video processing: {input_video}") | |
# Open video file | |
cap = cv2.VideoCapture(input_video) | |
if not cap.isOpened(): | |
print(f"Error: Cannot open video file: {input_video}") | |
return None | |
# Get video properties | |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
input_fps = cap.get(cv2.CAP_PROP_FPS) | |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
print(f"Video properties: {total_frames} frames, {input_fps} FPS, {width}x{height}") | |
# Create temporary output video file | |
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp_file: | |
output_path = tmp_file.name | |
# Set video encoder | |
fourcc = cv2.VideoWriter.fourcc(*'mp4v') | |
out = cv2.VideoWriter(output_path, fourcc, input_fps, (width, height)) | |
if not out.isOpened(): | |
print(f"Error: Cannot create output video: {output_path}") | |
cap.release() | |
return None | |
frame_count = 0 | |
# Process each frame | |
while True: | |
ret, frame = cap.read() | |
if not ret: | |
break | |
frame_count += 1 | |
progress_percent = frame_count / total_frames | |
progress(progress_percent, desc=f"Processing frame {frame_count}/{total_frames}") | |
try: | |
# Preprocess current frame | |
image_tensor, original_size = preprocess_image_from_array(frame) | |
if torch.cuda.is_available(): | |
image_tensor = image_tensor.cuda() | |
# Perform depth estimation | |
with torch.no_grad(): | |
prediction = model(image_tensor) | |
disparity_tensor = prediction['out'] | |
depth_tensor = normalize_depth(disparity_tensor) | |
# Postprocess depth map | |
depth = postprocess_depth(depth_tensor, original_size) | |
# Handle failed processing | |
if depth is None: | |
if depth_tensor.dim() == 1: | |
h, w = original_size | |
expected_size = h * w | |
if depth_tensor.shape[0] == expected_size: | |
depth_tensor = depth_tensor.view(1, 1, h, w) | |
else: | |
import math | |
side_length = int(math.sqrt(depth_tensor.shape[0])) | |
if side_length * side_length == depth_tensor.shape[0]: | |
depth_tensor = depth_tensor.view(1, 1, side_length, side_length) | |
depth = postprocess_depth(depth_tensor, original_size) | |
# Generate colored depth map | |
if depth is None: | |
print(f"Warning: Failed to process frame {frame_count}, using black frame") | |
depth_frame = np.zeros((height, width, 3), dtype=np.uint8) | |
else: | |
if colormap_choice.lower() == 'inferno': | |
depth_frame = cv2.applyColorMap((depth * 255).astype(np.uint8), cv2.COLORMAP_INFERNO) | |
elif colormap_choice.lower() == 'spectral': | |
from matplotlib import cm | |
spectral_cmap = cm.get_cmap('Spectral_r') | |
depth_frame = (spectral_cmap(depth) * 255).astype(np.uint8) | |
depth_frame = cv2.cvtColor(depth_frame, cv2.COLOR_RGBA2BGR) | |
else: # gray | |
depth_frame = (depth * 255).astype(np.uint8) | |
depth_frame = cv2.cvtColor(depth_frame, cv2.COLOR_GRAY2BGR) | |
# Write to output video | |
out.write(depth_frame) | |
except Exception as e: | |
print(f"Error processing frame {frame_count}: {str(e)}") | |
# Write black frame | |
black_frame = np.zeros((height, width, 3), dtype=np.uint8) | |
out.write(black_frame) | |
# Release resources | |
cap.release() | |
out.release() | |
print(f"Video processing completed! Output saved to: {output_path}") | |
return output_path | |
except Exception as e: | |
print(f"Error during video inference: {str(e)}") | |
return None | |
with gr.Blocks(title="Depth Anything AC - Depth Estimation Demo", theme=gr.themes.Soft()) as demo: | |
gr.Markdown(""" | |
# 🌊 Depth Anything AC - Depth Estimation Demo | |
Upload an image or video and AI will generate the corresponding depth map! Different colors in the depth map represent different distances, allowing you to see the three-dimensional structure of the scene. | |
## How to Use | |
1. Choose image or video tab | |
2. Upload your file | |
3. Select your preferred colormap style | |
4. Click the "Generate Depth Map" button | |
5. View results and download | |
""") | |
with gr.Tabs(): | |
# Image processing tab | |
with gr.TabItem("📷 Image Depth Estimation"): | |
# Main image display row with strict alignment | |
with gr.Row(): | |
with gr.Column(scale=1): | |
input_image = gr.Image( | |
label="Upload Image", | |
type="pil", | |
height=400, | |
container=True | |
) | |
with gr.Column(scale=1): | |
output_image = gr.Image( | |
label="Depth Map Result", | |
type="pil", | |
height=400, | |
container=True, | |
interactive=True | |
) | |
# 添加工具栏来保持高度一致 | |
with gr.Row(): | |
download_btn = gr.DownloadButton( | |
"💾 Download Depth Map", | |
variant="secondary", | |
size="sm" | |
) | |
clear_btn = gr.Button( | |
"🗑️ Clear Result", | |
variant="secondary", | |
size="sm" | |
) | |
# Controls section in a separate row | |
with gr.Row(): | |
with gr.Column(scale=2): | |
image_colormap_choice = gr.Dropdown( | |
choices=["Spectral", "Inferno", "Gray"], | |
value="Spectral", | |
label="Colormap" | |
) | |
with gr.Column(scale=2): | |
image_submit_btn = gr.Button( | |
"🎯 Generate Image Depth Map", | |
variant="primary", | |
size="lg" | |
) | |
# Examples section | |
gr.Examples( | |
examples=[ | |
["toyset/1.png", "Spectral"], | |
["toyset/2.png", "Spectral"], | |
["toyset/3.png", "Spectral"], | |
["toyset/4.png", "Spectral"], | |
["toyset/5.png", "Spectral"], | |
["toyset/good.png", "Spectral"], | |
] if os.path.exists("toyset") else [], | |
inputs=[input_image, image_colormap_choice], | |
outputs=output_image, | |
fn=predict_depth, | |
cache_examples=False, | |
label="Try these example images" | |
) | |
# Video processing tab | |
with gr.TabItem("🎬 Video Depth Estimation"): | |
# Main video display row with strict alignment | |
with gr.Row(): | |
with gr.Column(scale=1): | |
input_video = gr.Video( | |
label="Upload Video", | |
height=400, | |
container=True | |
) | |
with gr.Column(scale=1): | |
output_video = gr.Video( | |
label="Depth Map Video Result", | |
height=400, | |
container=True | |
) | |
# 添加工具栏来保持高度一致 | |
with gr.Row(): | |
video_download_btn = gr.DownloadButton( | |
"💾 Download Depth Video", | |
variant="secondary", | |
size="sm" | |
) | |
video_clear_btn = gr.Button( | |
"🗑️ Clear Result", | |
variant="secondary", | |
size="sm" | |
) | |
# Controls section in a separate row | |
with gr.Row(): | |
with gr.Column(scale=2): | |
video_colormap_choice = gr.Dropdown( | |
choices=["Spectral", "Inferno", "Gray"], | |
value="Spectral", | |
label="Colormap" | |
) | |
with gr.Column(scale=2): | |
video_submit_btn = gr.Button( | |
"🎯 Generate Video Depth Map", | |
variant="primary", | |
size="lg" | |
) | |
# Examples section | |
gr.Examples( | |
examples=[ | |
["toyset/fog.mp4", "Spectral"], | |
["toyset/snow.mp4", "Spectral"], | |
] if os.path.exists("toyset/fog.mp4") and os.path.exists("toyset/snow.mp4") else [], | |
inputs=[input_video, video_colormap_choice], | |
outputs=output_video, | |
fn=predict_video_depth, | |
cache_examples=False, | |
label="Try these example videos" | |
) | |
# Event bindings | |
image_submit_btn.click( | |
fn=predict_depth, | |
inputs=[input_image, image_colormap_choice], | |
outputs=output_image, | |
show_progress=True | |
) | |
clear_btn.click( | |
fn=clear_results, | |
inputs=[], | |
outputs=output_image | |
) | |
video_submit_btn.click( | |
fn=predict_video_depth, | |
inputs=[input_video, video_colormap_choice], | |
outputs=output_video, | |
show_progress=True | |
) | |
video_clear_btn.click( | |
fn=clear_results, | |
inputs=[], | |
outputs=output_video | |
) | |
gr.Markdown(""" | |
## 📝 Notes | |
- **Spectral**: Rainbow spectrum with distinct near-far contrast | |
- **Inferno**: Flame spectrum with warm tones | |
- **Gray**: Grayscale with classic effect | |
## 💡 Tips | |
- Image processing is fast, suitable for quick preview of single images | |
- Video processing may take longer time, please be patient | |
- GPU is recommended for faster processing speed | |
""") | |
if __name__ == "__main__": | |
demo.launch( | |
server_name="0.0.0.0", | |
server_port=7860, | |
share=False, | |
show_error=True | |
) |