ghost233lism's picture
Upload app.py
7558653 verified
import gradio as gr
import os
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
import tempfile
import io
from tqdm import tqdm
from depth_anything.dpt import DepthAnything_AC
def normalize_depth(disparity_tensor):
"""Standard normalization method to convert disparity to depth"""
eps = 1e-6
disparity_min = disparity_tensor.min()
disparity_max = disparity_tensor.max()
normalized_disparity = (disparity_tensor - disparity_min) / (disparity_max - disparity_min + eps)
return normalized_disparity
def load_model(model_path='checkpoints/depth_anything_AC_vits.pth', encoder='vits'):
"""Load trained depth estimation model"""
model_configs = {
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024], 'version': 'v2'},
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768], 'version': 'v2'},
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384], 'version': 'v2'}
}
model = DepthAnything_AC(model_configs[encoder])
if os.path.exists(model_path):
checkpoint = torch.load(model_path, map_location='cpu')
model.load_state_dict(checkpoint, strict=False)
else:
print(f"Warning: Model file {model_path} not found")
model.eval()
if torch.cuda.is_available():
model.cuda()
return model
def preprocess_image(image, target_size=518):
"""Preprocess input image"""
if isinstance(image, Image.Image):
image = np.array(image)
if len(image.shape) == 3 and image.shape[2] == 3:
pass
elif len(image.shape) == 3 and image.shape[2] == 4:
image = image[:, :, :3]
image = image.astype(np.float32) / 255.0
h, w = image.shape[:2]
scale = target_size / min(h, w)
new_h, new_w = int(h * scale), int(w * scale)
new_h = ((new_h + 13) // 14) * 14
new_w = ((new_w + 13) // 14) * 14
image = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_CUBIC)
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
image = (image - mean) / std
image = torch.from_numpy(image.transpose(2, 0, 1)).float()
image = image.unsqueeze(0)
return image, (h, w)
def preprocess_image_from_array(image_array, target_size=518):
"""Preprocess input image from numpy array (for video frames)"""
if len(image_array.shape) == 3 and image_array.shape[2] == 3:
# Convert BGR to RGB if needed
image = cv2.cvtColor(image_array, cv2.COLOR_BGR2RGB).astype(np.float32) / 255.0
else:
image = image_array.astype(np.float32) / 255.0
h, w = image.shape[:2]
scale = target_size / min(h, w)
new_h, new_w = int(h * scale), int(w * scale)
new_h = ((new_h + 13) // 14) * 14
new_w = ((new_w + 13) // 14) * 14
image = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_CUBIC)
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
image = (image - mean) / std
image = torch.from_numpy(image.transpose(2, 0, 1)).float()
image = image.unsqueeze(0)
return image, (h, w)
def postprocess_depth(depth_tensor, original_size):
"""Post-process depth map"""
if depth_tensor.dim() == 3:
depth_tensor = depth_tensor.unsqueeze(1)
elif depth_tensor.dim() == 2:
depth_tensor = depth_tensor.unsqueeze(0).unsqueeze(1)
h, w = original_size
depth = F.interpolate(depth_tensor, size=(h, w), mode='bilinear', align_corners=True)
depth = depth.squeeze().cpu().numpy()
return depth
def create_colored_depth_map(depth, colormap='spectral'):
"""Create colored depth map"""
if colormap == 'inferno':
depth_colored = cv2.applyColorMap((depth * 255).astype(np.uint8), cv2.COLORMAP_INFERNO)
depth_colored = cv2.cvtColor(depth_colored, cv2.COLOR_BGR2RGB)
elif colormap == 'spectral':
from matplotlib import cm
spectral_cmap = cm.get_cmap('Spectral_r')
depth_colored = (spectral_cmap(depth) * 255).astype(np.uint8)
depth_colored = depth_colored[:, :, :3]
else:
depth_colored = (depth * 255).astype(np.uint8)
depth_colored = np.stack([depth_colored] * 3, axis=2)
return depth_colored
def is_video_file(filepath):
"""Check if the given file is a video file based on its extension"""
video_extensions = ['.mp4', '.avi', '.mov', '.mkv', '.flv', '.wmv', '.webm', '.m4v']
_, ext = os.path.splitext(filepath.lower())
return ext in video_extensions
print("Loading model...")
model = load_model()
print("Model loaded successfully!")
def predict_depth(input_image, colormap_choice):
"""Main depth prediction function for images"""
try:
image_tensor, original_size = preprocess_image(input_image)
if torch.cuda.is_available():
image_tensor = image_tensor.cuda()
with torch.no_grad():
prediction = model(image_tensor)
disparity_tensor = prediction['out']
depth_tensor = normalize_depth(disparity_tensor)
depth = postprocess_depth(depth_tensor, original_size)
depth_colored = create_colored_depth_map(depth, colormap_choice.lower())
return Image.fromarray(depth_colored)
except Exception as e:
print(f"Error during image inference: {str(e)}")
return None
def clear_results():
"""Clear the output image"""
return None
def predict_video_depth(input_video, colormap_choice, progress=gr.Progress()):
"""Main depth prediction function for videos"""
if input_video is None:
return None
try:
print(f"Starting video processing: {input_video}")
# Open video file
cap = cv2.VideoCapture(input_video)
if not cap.isOpened():
print(f"Error: Cannot open video file: {input_video}")
return None
# Get video properties
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
input_fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
print(f"Video properties: {total_frames} frames, {input_fps} FPS, {width}x{height}")
# Create temporary output video file
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp_file:
output_path = tmp_file.name
# Set video encoder
fourcc = cv2.VideoWriter.fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, input_fps, (width, height))
if not out.isOpened():
print(f"Error: Cannot create output video: {output_path}")
cap.release()
return None
frame_count = 0
# Process each frame
while True:
ret, frame = cap.read()
if not ret:
break
frame_count += 1
progress_percent = frame_count / total_frames
progress(progress_percent, desc=f"Processing frame {frame_count}/{total_frames}")
try:
# Preprocess current frame
image_tensor, original_size = preprocess_image_from_array(frame)
if torch.cuda.is_available():
image_tensor = image_tensor.cuda()
# Perform depth estimation
with torch.no_grad():
prediction = model(image_tensor)
disparity_tensor = prediction['out']
depth_tensor = normalize_depth(disparity_tensor)
# Postprocess depth map
depth = postprocess_depth(depth_tensor, original_size)
# Handle failed processing
if depth is None:
if depth_tensor.dim() == 1:
h, w = original_size
expected_size = h * w
if depth_tensor.shape[0] == expected_size:
depth_tensor = depth_tensor.view(1, 1, h, w)
else:
import math
side_length = int(math.sqrt(depth_tensor.shape[0]))
if side_length * side_length == depth_tensor.shape[0]:
depth_tensor = depth_tensor.view(1, 1, side_length, side_length)
depth = postprocess_depth(depth_tensor, original_size)
# Generate colored depth map
if depth is None:
print(f"Warning: Failed to process frame {frame_count}, using black frame")
depth_frame = np.zeros((height, width, 3), dtype=np.uint8)
else:
if colormap_choice.lower() == 'inferno':
depth_frame = cv2.applyColorMap((depth * 255).astype(np.uint8), cv2.COLORMAP_INFERNO)
elif colormap_choice.lower() == 'spectral':
from matplotlib import cm
spectral_cmap = cm.get_cmap('Spectral_r')
depth_frame = (spectral_cmap(depth) * 255).astype(np.uint8)
depth_frame = cv2.cvtColor(depth_frame, cv2.COLOR_RGBA2BGR)
else: # gray
depth_frame = (depth * 255).astype(np.uint8)
depth_frame = cv2.cvtColor(depth_frame, cv2.COLOR_GRAY2BGR)
# Write to output video
out.write(depth_frame)
except Exception as e:
print(f"Error processing frame {frame_count}: {str(e)}")
# Write black frame
black_frame = np.zeros((height, width, 3), dtype=np.uint8)
out.write(black_frame)
# Release resources
cap.release()
out.release()
print(f"Video processing completed! Output saved to: {output_path}")
return output_path
except Exception as e:
print(f"Error during video inference: {str(e)}")
return None
with gr.Blocks(title="Depth Anything AC - Depth Estimation Demo", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# 🌊 Depth Anything AC - Depth Estimation Demo
Upload an image or video and AI will generate the corresponding depth map! Different colors in the depth map represent different distances, allowing you to see the three-dimensional structure of the scene.
## How to Use
1. Choose image or video tab
2. Upload your file
3. Select your preferred colormap style
4. Click the "Generate Depth Map" button
5. View results and download
""")
with gr.Tabs():
# Image processing tab
with gr.TabItem("📷 Image Depth Estimation"):
# Main image display row with strict alignment
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(
label="Upload Image",
type="pil",
height=400,
container=True
)
with gr.Column(scale=1):
output_image = gr.Image(
label="Depth Map Result",
type="pil",
height=400,
container=True,
interactive=True
)
# 添加工具栏来保持高度一致
with gr.Row():
download_btn = gr.DownloadButton(
"💾 Download Depth Map",
variant="secondary",
size="sm"
)
clear_btn = gr.Button(
"🗑️ Clear Result",
variant="secondary",
size="sm"
)
# Controls section in a separate row
with gr.Row():
with gr.Column(scale=2):
image_colormap_choice = gr.Dropdown(
choices=["Spectral", "Inferno", "Gray"],
value="Spectral",
label="Colormap"
)
with gr.Column(scale=2):
image_submit_btn = gr.Button(
"🎯 Generate Image Depth Map",
variant="primary",
size="lg"
)
# Examples section
gr.Examples(
examples=[
["toyset/1.png", "Spectral"],
["toyset/2.png", "Spectral"],
["toyset/3.png", "Spectral"],
["toyset/4.png", "Spectral"],
["toyset/5.png", "Spectral"],
["toyset/good.png", "Spectral"],
] if os.path.exists("toyset") else [],
inputs=[input_image, image_colormap_choice],
outputs=output_image,
fn=predict_depth,
cache_examples=False,
label="Try these example images"
)
# Video processing tab
with gr.TabItem("🎬 Video Depth Estimation"):
# Main video display row with strict alignment
with gr.Row():
with gr.Column(scale=1):
input_video = gr.Video(
label="Upload Video",
height=400,
container=True
)
with gr.Column(scale=1):
output_video = gr.Video(
label="Depth Map Video Result",
height=400,
container=True
)
# 添加工具栏来保持高度一致
with gr.Row():
video_download_btn = gr.DownloadButton(
"💾 Download Depth Video",
variant="secondary",
size="sm"
)
video_clear_btn = gr.Button(
"🗑️ Clear Result",
variant="secondary",
size="sm"
)
# Controls section in a separate row
with gr.Row():
with gr.Column(scale=2):
video_colormap_choice = gr.Dropdown(
choices=["Spectral", "Inferno", "Gray"],
value="Spectral",
label="Colormap"
)
with gr.Column(scale=2):
video_submit_btn = gr.Button(
"🎯 Generate Video Depth Map",
variant="primary",
size="lg"
)
# Examples section
gr.Examples(
examples=[
["toyset/fog.mp4", "Spectral"],
["toyset/snow.mp4", "Spectral"],
] if os.path.exists("toyset/fog.mp4") and os.path.exists("toyset/snow.mp4") else [],
inputs=[input_video, video_colormap_choice],
outputs=output_video,
fn=predict_video_depth,
cache_examples=False,
label="Try these example videos"
)
# Event bindings
image_submit_btn.click(
fn=predict_depth,
inputs=[input_image, image_colormap_choice],
outputs=output_image,
show_progress=True
)
clear_btn.click(
fn=clear_results,
inputs=[],
outputs=output_image
)
video_submit_btn.click(
fn=predict_video_depth,
inputs=[input_video, video_colormap_choice],
outputs=output_video,
show_progress=True
)
video_clear_btn.click(
fn=clear_results,
inputs=[],
outputs=output_video
)
gr.Markdown("""
## 📝 Notes
- **Spectral**: Rainbow spectrum with distinct near-far contrast
- **Inferno**: Flame spectrum with warm tones
- **Gray**: Grayscale with classic effect
## 💡 Tips
- Image processing is fast, suitable for quick preview of single images
- Video processing may take longer time, please be patient
- GPU is recommended for faster processing speed
""")
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True
)