Spaces:
Running
Running
File size: 17,673 Bytes
343f44f 7558653 343f44f c8957ff 343f44f c8957ff 7558653 d21010d 7558653 366b762 d21010d 366b762 d21010d 343f44f d21010d 343f44f d21010d 343f44f 366b762 343f44f c8957ff 7558653 d21010d 7558653 366b762 d21010d 366b762 d21010d 343f44f d21010d 343f44f d21010d 343f44f 7558653 343f44f 7558653 343f44f 7f0f123 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 |
import gradio as gr
import os
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
import tempfile
import io
from tqdm import tqdm
from depth_anything.dpt import DepthAnything_AC
def normalize_depth(disparity_tensor):
"""Standard normalization method to convert disparity to depth"""
eps = 1e-6
disparity_min = disparity_tensor.min()
disparity_max = disparity_tensor.max()
normalized_disparity = (disparity_tensor - disparity_min) / (disparity_max - disparity_min + eps)
return normalized_disparity
def load_model(model_path='checkpoints/depth_anything_AC_vits.pth', encoder='vits'):
"""Load trained depth estimation model"""
model_configs = {
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024], 'version': 'v2'},
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768], 'version': 'v2'},
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384], 'version': 'v2'}
}
model = DepthAnything_AC(model_configs[encoder])
if os.path.exists(model_path):
checkpoint = torch.load(model_path, map_location='cpu')
model.load_state_dict(checkpoint, strict=False)
else:
print(f"Warning: Model file {model_path} not found")
model.eval()
if torch.cuda.is_available():
model.cuda()
return model
def preprocess_image(image, target_size=518):
"""Preprocess input image"""
if isinstance(image, Image.Image):
image = np.array(image)
if len(image.shape) == 3 and image.shape[2] == 3:
pass
elif len(image.shape) == 3 and image.shape[2] == 4:
image = image[:, :, :3]
image = image.astype(np.float32) / 255.0
h, w = image.shape[:2]
scale = target_size / min(h, w)
new_h, new_w = int(h * scale), int(w * scale)
new_h = ((new_h + 13) // 14) * 14
new_w = ((new_w + 13) // 14) * 14
image = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_CUBIC)
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
image = (image - mean) / std
image = torch.from_numpy(image.transpose(2, 0, 1)).float()
image = image.unsqueeze(0)
return image, (h, w)
def preprocess_image_from_array(image_array, target_size=518):
"""Preprocess input image from numpy array (for video frames)"""
if len(image_array.shape) == 3 and image_array.shape[2] == 3:
# Convert BGR to RGB if needed
image = cv2.cvtColor(image_array, cv2.COLOR_BGR2RGB).astype(np.float32) / 255.0
else:
image = image_array.astype(np.float32) / 255.0
h, w = image.shape[:2]
scale = target_size / min(h, w)
new_h, new_w = int(h * scale), int(w * scale)
new_h = ((new_h + 13) // 14) * 14
new_w = ((new_w + 13) // 14) * 14
image = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_CUBIC)
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
image = (image - mean) / std
image = torch.from_numpy(image.transpose(2, 0, 1)).float()
image = image.unsqueeze(0)
return image, (h, w)
def postprocess_depth(depth_tensor, original_size):
"""Post-process depth map"""
if depth_tensor.dim() == 3:
depth_tensor = depth_tensor.unsqueeze(1)
elif depth_tensor.dim() == 2:
depth_tensor = depth_tensor.unsqueeze(0).unsqueeze(1)
h, w = original_size
depth = F.interpolate(depth_tensor, size=(h, w), mode='bilinear', align_corners=True)
depth = depth.squeeze().cpu().numpy()
return depth
def create_colored_depth_map(depth, colormap='spectral'):
"""Create colored depth map"""
if colormap == 'inferno':
depth_colored = cv2.applyColorMap((depth * 255).astype(np.uint8), cv2.COLORMAP_INFERNO)
depth_colored = cv2.cvtColor(depth_colored, cv2.COLOR_BGR2RGB)
elif colormap == 'spectral':
from matplotlib import cm
spectral_cmap = cm.get_cmap('Spectral_r')
depth_colored = (spectral_cmap(depth) * 255).astype(np.uint8)
depth_colored = depth_colored[:, :, :3]
else:
depth_colored = (depth * 255).astype(np.uint8)
depth_colored = np.stack([depth_colored] * 3, axis=2)
return depth_colored
def is_video_file(filepath):
"""Check if the given file is a video file based on its extension"""
video_extensions = ['.mp4', '.avi', '.mov', '.mkv', '.flv', '.wmv', '.webm', '.m4v']
_, ext = os.path.splitext(filepath.lower())
return ext in video_extensions
print("Loading model...")
model = load_model()
print("Model loaded successfully!")
def predict_depth(input_image, colormap_choice):
"""Main depth prediction function for images"""
try:
image_tensor, original_size = preprocess_image(input_image)
if torch.cuda.is_available():
image_tensor = image_tensor.cuda()
with torch.no_grad():
prediction = model(image_tensor)
disparity_tensor = prediction['out']
depth_tensor = normalize_depth(disparity_tensor)
depth = postprocess_depth(depth_tensor, original_size)
depth_colored = create_colored_depth_map(depth, colormap_choice.lower())
return Image.fromarray(depth_colored)
except Exception as e:
print(f"Error during image inference: {str(e)}")
return None
def clear_results():
"""Clear the output image"""
return None
def predict_video_depth(input_video, colormap_choice, progress=gr.Progress()):
"""Main depth prediction function for videos"""
if input_video is None:
return None
try:
print(f"Starting video processing: {input_video}")
# Open video file
cap = cv2.VideoCapture(input_video)
if not cap.isOpened():
print(f"Error: Cannot open video file: {input_video}")
return None
# Get video properties
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
input_fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
print(f"Video properties: {total_frames} frames, {input_fps} FPS, {width}x{height}")
# Create temporary output video file
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp_file:
output_path = tmp_file.name
# Set video encoder
fourcc = cv2.VideoWriter.fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, input_fps, (width, height))
if not out.isOpened():
print(f"Error: Cannot create output video: {output_path}")
cap.release()
return None
frame_count = 0
# Process each frame
while True:
ret, frame = cap.read()
if not ret:
break
frame_count += 1
progress_percent = frame_count / total_frames
progress(progress_percent, desc=f"Processing frame {frame_count}/{total_frames}")
try:
# Preprocess current frame
image_tensor, original_size = preprocess_image_from_array(frame)
if torch.cuda.is_available():
image_tensor = image_tensor.cuda()
# Perform depth estimation
with torch.no_grad():
prediction = model(image_tensor)
disparity_tensor = prediction['out']
depth_tensor = normalize_depth(disparity_tensor)
# Postprocess depth map
depth = postprocess_depth(depth_tensor, original_size)
# Handle failed processing
if depth is None:
if depth_tensor.dim() == 1:
h, w = original_size
expected_size = h * w
if depth_tensor.shape[0] == expected_size:
depth_tensor = depth_tensor.view(1, 1, h, w)
else:
import math
side_length = int(math.sqrt(depth_tensor.shape[0]))
if side_length * side_length == depth_tensor.shape[0]:
depth_tensor = depth_tensor.view(1, 1, side_length, side_length)
depth = postprocess_depth(depth_tensor, original_size)
# Generate colored depth map
if depth is None:
print(f"Warning: Failed to process frame {frame_count}, using black frame")
depth_frame = np.zeros((height, width, 3), dtype=np.uint8)
else:
if colormap_choice.lower() == 'inferno':
depth_frame = cv2.applyColorMap((depth * 255).astype(np.uint8), cv2.COLORMAP_INFERNO)
elif colormap_choice.lower() == 'spectral':
from matplotlib import cm
spectral_cmap = cm.get_cmap('Spectral_r')
depth_frame = (spectral_cmap(depth) * 255).astype(np.uint8)
depth_frame = cv2.cvtColor(depth_frame, cv2.COLOR_RGBA2BGR)
else: # gray
depth_frame = (depth * 255).astype(np.uint8)
depth_frame = cv2.cvtColor(depth_frame, cv2.COLOR_GRAY2BGR)
# Write to output video
out.write(depth_frame)
except Exception as e:
print(f"Error processing frame {frame_count}: {str(e)}")
# Write black frame
black_frame = np.zeros((height, width, 3), dtype=np.uint8)
out.write(black_frame)
# Release resources
cap.release()
out.release()
print(f"Video processing completed! Output saved to: {output_path}")
return output_path
except Exception as e:
print(f"Error during video inference: {str(e)}")
return None
with gr.Blocks(title="Depth Anything AC - Depth Estimation Demo", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# 🌊 Depth Anything AC - Depth Estimation Demo
Upload an image or video and AI will generate the corresponding depth map! Different colors in the depth map represent different distances, allowing you to see the three-dimensional structure of the scene.
## How to Use
1. Choose image or video tab
2. Upload your file
3. Select your preferred colormap style
4. Click the "Generate Depth Map" button
5. View results and download
""")
with gr.Tabs():
# Image processing tab
with gr.TabItem("📷 Image Depth Estimation"):
# Main image display row with strict alignment
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(
label="Upload Image",
type="pil",
height=400,
container=True
)
with gr.Column(scale=1):
output_image = gr.Image(
label="Depth Map Result",
type="pil",
height=400,
container=True,
interactive=True
)
# 添加工具栏来保持高度一致
with gr.Row():
download_btn = gr.DownloadButton(
"💾 Download Depth Map",
variant="secondary",
size="sm"
)
clear_btn = gr.Button(
"🗑️ Clear Result",
variant="secondary",
size="sm"
)
# Controls section in a separate row
with gr.Row():
with gr.Column(scale=2):
image_colormap_choice = gr.Dropdown(
choices=["Spectral", "Inferno", "Gray"],
value="Spectral",
label="Colormap"
)
with gr.Column(scale=2):
image_submit_btn = gr.Button(
"🎯 Generate Image Depth Map",
variant="primary",
size="lg"
)
# Examples section
gr.Examples(
examples=[
["toyset/1.png", "Spectral"],
["toyset/2.png", "Spectral"],
["toyset/3.png", "Spectral"],
["toyset/4.png", "Spectral"],
["toyset/5.png", "Spectral"],
["toyset/good.png", "Spectral"],
] if os.path.exists("toyset") else [],
inputs=[input_image, image_colormap_choice],
outputs=output_image,
fn=predict_depth,
cache_examples=False,
label="Try these example images"
)
# Video processing tab
with gr.TabItem("🎬 Video Depth Estimation"):
# Main video display row with strict alignment
with gr.Row():
with gr.Column(scale=1):
input_video = gr.Video(
label="Upload Video",
height=400,
container=True
)
with gr.Column(scale=1):
output_video = gr.Video(
label="Depth Map Video Result",
height=400,
container=True
)
# 添加工具栏来保持高度一致
with gr.Row():
video_download_btn = gr.DownloadButton(
"💾 Download Depth Video",
variant="secondary",
size="sm"
)
video_clear_btn = gr.Button(
"🗑️ Clear Result",
variant="secondary",
size="sm"
)
# Controls section in a separate row
with gr.Row():
with gr.Column(scale=2):
video_colormap_choice = gr.Dropdown(
choices=["Spectral", "Inferno", "Gray"],
value="Spectral",
label="Colormap"
)
with gr.Column(scale=2):
video_submit_btn = gr.Button(
"🎯 Generate Video Depth Map",
variant="primary",
size="lg"
)
# Examples section
gr.Examples(
examples=[
["toyset/fog.mp4", "Spectral"],
["toyset/snow.mp4", "Spectral"],
] if os.path.exists("toyset/fog.mp4") and os.path.exists("toyset/snow.mp4") else [],
inputs=[input_video, video_colormap_choice],
outputs=output_video,
fn=predict_video_depth,
cache_examples=False,
label="Try these example videos"
)
# Event bindings
image_submit_btn.click(
fn=predict_depth,
inputs=[input_image, image_colormap_choice],
outputs=output_image,
show_progress=True
)
clear_btn.click(
fn=clear_results,
inputs=[],
outputs=output_image
)
video_submit_btn.click(
fn=predict_video_depth,
inputs=[input_video, video_colormap_choice],
outputs=output_video,
show_progress=True
)
video_clear_btn.click(
fn=clear_results,
inputs=[],
outputs=output_video
)
gr.Markdown("""
## 📝 Notes
- **Spectral**: Rainbow spectrum with distinct near-far contrast
- **Inferno**: Flame spectrum with warm tones
- **Gray**: Grayscale with classic effect
## 💡 Tips
- Image processing is fast, suitable for quick preview of single images
- Video processing may take longer time, please be patient
- GPU is recommended for faster processing speed
""")
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True
) |