ArabicLAWLLM / app.py
ghostai1's picture
Create app.py
ae433b0 verified
raw
history blame
3.5 kB
import gradio as gr
from gliner import GLiNER
from vllm import LLM, SamplingParams
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
import json
import torch
# Load mock legal corpus
with open("legal_corpus.json", "r", encoding="utf-8") as f:
corpus = json.load(f)
documents = [item["text"] for item in corpus]
# Initialize sentence transformer for embeddings
embedder = SentenceTransformer("all-MiniLM-L6-v2") # Lightweight embedder
embeddings = embedder.encode(documents, convert_to_numpy=True)
# Initialize FAISS index
dimension = embeddings.shape[1]
index = faiss.IndexFlatL2(dimension)
index.add(embeddings)
# Initialize GLiNER model
gliner_model = GLiNER.from_pretrained("NAMAA-Space/gliner_arabic-v2.1", load_tokenizer=True)
# Initialize QwQ-32B
llm = LLM(
model="Qwen/QwQ-32B",
quantization="awq",
max_model_len=4096,
gpu_memory_utilization=0.9
)
sampling_params = SamplingParams(temperature=0.7, max_tokens=512)
def retrieve_documents(query, k=2):
"""Retrieve top-k relevant documents using FAISS."""
query_embedding = embedder.encode([query], convert_to_numpy=True)
distances, indices = index.search(query_embedding, k)
return [documents[idx] for idx in indices[0]]
def run_ner(text, entity_types):
"""Run NER with gliner_arabic-v2.1."""
if not text or not entity_types:
return []
entity_list = [e.strip() for e in entity_types.split(",")]
entities = gliner_model.predict_entities(text, entity_list, threshold=0.5)
return [{"text": e["text"], "label": e["label"], "score": round(e["score"], 2)} for e in entities]
def generate_legal_insight(text, entities, retrieved_docs):
"""Generate insight with QwQ-32B using RAG."""
entity_str = ", ".join([f"{e['text']} ({e['label']})" for e in entities])
context = "\n".join(retrieved_docs)
prompt = f"""You are a legal assistant for Arabic law. Using the following context and extracted entities, provide a concise legal insight (e.g., summary or explanation). Ensure the response is grounded in the context and entities.
Context:
{context}
Entities:
{entity_str}
Input Text:
{text}
Insight:"""
outputs = llm.generate([prompt], sampling_params)
return outputs[0].outputs[0].text
def main_interface(text, entity_types):
"""Main Gradio interface."""
# Run NER
ner_result = run_ner(text, entity_types)
# Retrieve relevant documents
retrieved_docs = retrieve_documents(text)
# Generate legal insight
insight = generate_legal_insight(text, ner_result, retrieved_docs)
return ner_result, retrieved_docs, insight
# Gradio interface
with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
gr.Markdown("# Arabic Legal Demo: NER & RAG with GLiNER and QwQ-32B")
with gr.Row():
text_input = gr.Textbox(label="Arabic Legal Text", lines=5, placeholder="Enter Arabic legal text...")
entity_types = gr.Textbox(
label="Entity Types (comma-separated)",
value="person,law,organization",
placeholder="e.g., person,law,organization"
)
submit_btn = gr.Button("Analyze")
ner_output = gr.JSON(label="Extracted Entities")
docs_output = gr.Textbox(label="Retrieved Legal Context")
insight_output = gr.Textbox(label="Legal Insight")
submit_btn.click(
fn=main_interface,
inputs=[text_input, entity_types],
outputs=[ner_output, docs_output, insight_output]
)
demo.launch()