Spaces:
Build error
Build error
#!/usr/bin/env python3 | |
# FILE: app.py | |
# Description: Image-to-Video generation server with Gradio UI and FastAPI for Hugging Face Spaces | |
# Version: 1.2.8 | |
# Timestamp: 2025-07-01 20:41 CDT | |
# Author: Grok 3, built by xAI (based on GhostAI's ghostpack_gradio_f1.py) | |
# NOTE: Optimized for Hugging Face Spaces with H200 GPU, 25 min/day render time | |
# Loads models from Hugging Face Hub to avoid HDD costs | |
# Uses /data for persistent storage, /tmp for temporary files | |
# API key authentication for /generate endpoint (off-site use) | |
# Base64-encoded video responses | |
# Gradio UI matches original ghostpack_gradio_f1.py | |
# Idle until triggered by API or Gradio | |
import os | |
import sys | |
import time | |
import json | |
import argparse | |
import importlib.util | |
import subprocess | |
import traceback | |
import torch | |
import einops | |
import numpy as np | |
from PIL import Image | |
import io | |
import gradio as gr | |
import asyncio | |
import queue | |
from threading import Thread | |
import re | |
import logging | |
import base64 | |
import socket | |
import requests | |
import shutil | |
import uuid | |
from fastapi import FastAPI, HTTPException, UploadFile, File, Form, Depends, Security, status | |
from fastapi.security import APIKeyHeader | |
from fastapi.middleware.cors import CORSMiddleware | |
from fastapi.responses import JSONResponse | |
from pydantic import BaseModel | |
from diffusers import AutoencoderKLHunyuanVideo | |
from transformers import ( | |
LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer, | |
SiglipImageProcessor, SiglipVisionModel | |
) | |
from diffusers_helper.hunyuan import ( | |
encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake | |
) | |
from diffusers_helper.utils import ( | |
save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw | |
) | |
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked | |
from diffusers_helper.memory import ( | |
gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, | |
offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, | |
DynamicSwapInstaller, unload_complete_models, load_model_as_complete | |
) | |
from diffusers_helper.clip_vision import hf_clip_vision_encode | |
from diffusers_helper.bucket_tools import find_nearest_bucket | |
from diffusers_helper.thread_utils import AsyncStream | |
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html | |
# Optional: Colorama for colored console output | |
try: | |
from colorama import init, Fore, Style | |
init(autoreset=True) | |
COLORAMA_AVAILABLE = True | |
def red(s): return Fore.RED + s + Style.RESET_ALL | |
def green(s): return Fore.GREEN + s + Style.RESET_ALL | |
def yellow(s): return Fore.YELLOW + s + Style.RESET_ALL | |
def reset_all(s): return Style.RESET_ALL + s | |
except ImportError: | |
COLORAMA_AVAILABLE = False | |
def red(s): return s | |
def green(s): return s | |
def yellow(s): return s | |
def reset_all(s): return s | |
# Set up logging | |
logging.basicConfig( | |
filename="/data/ghostpack.log", | |
level=logging.DEBUG, | |
format="%(asctime)s %(levelname)s:%(message)s", | |
) | |
logger = logging.getLogger(__name__) | |
logger.info("Starting GhostPack F1 Pro") | |
print(f"{green('Using /data/video_info.json for metadata')}") | |
VERSION = "1.2.8" | |
HF_TOKEN = os.getenv('HF_TOKEN', 'your-hf-token') # Set in Spaces secrets | |
API_KEY_NAME = "X-API-Key" | |
API_KEY = os.getenv('API_KEY', 'your-secret-key') # Set in Spaces secrets | |
api_key_header = APIKeyHeader(name=API_KEY_NAME, auto_error=False) | |
# Global job registry | |
active_jobs = {} # {job_id: AsyncStream} | |
job_status = {} # {job_id: {"status": str, "progress": float, "render_time": float}} | |
# CLI | |
parser = argparse.ArgumentParser(description="GhostPack F1 Pro") | |
parser.add_argument("--share", action="store_true", help="Share Gradio UI publicly") | |
parser.add_argument("--server", type=str, default="0.0.0.0", help="Server host") | |
parser.add_argument("--port", type=int, default=7860, help="FastAPI port") | |
parser.add_argument("--gradio", action="store_true", help="Enable Gradio UI") | |
parser.add_argument("--inbrowser", action="store_true", help="Open in browser") | |
parser.add_argument("--cli", action="store_true", help="Show CLI help") | |
args = parser.parse_args() | |
# Global state | |
render_on_off = True | |
BASE = os.path.abspath(os.path.dirname(__file__)) | |
os.environ["HF_HOME"] = "/tmp/hf_cache" # Cache models in /tmp | |
# Check if ports are available | |
def is_port_in_use(port): | |
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: | |
return s.connect_ex(('0.0.0.0', port)) == 0 | |
if args.cli: | |
print(f"{green('π» GhostPack F1 Pro CLI')}") | |
print("python app.py # Launch API") | |
print("python app.py --gradio # Launch API + Gradio UI") | |
print("python app.py --cli # Show help") | |
sys.exit(0) | |
# Paths | |
DATA_DIR = "/data" | |
TMP_DIR = "/tmp/ghostpack" | |
VIDEO_OUTPUT_DIR = "/tmp/ghostpack/vid" | |
VIDEO_IMG_DIR = "/tmp/ghostpack/img" | |
VIDEO_TMP_DIR = "/tmp/ghostpack/tmp_vid" | |
VIDEO_INFO_FILE = "/data/video_info.json" | |
PROMPT_LOG_FILE = "/data/prompts.txt" | |
SAVED_PROMPTS_FILE = "/data/saved_prompts.json" | |
INSTALL_LOG_FILE = "/data/install_logs.txt" | |
LAST_CLEANUP_FILE = "/data/last_cleanup.txt" | |
# Initialize directories | |
for d in (DATA_DIR, TMP_DIR, VIDEO_OUTPUT_DIR, VIDEO_IMG_DIR, VIDEO_TMP_DIR): | |
if not os.path.exists(d): | |
try: | |
os.makedirs(d, exist_ok=True) | |
os.chmod(d, 0o775) | |
logger.debug(f"Created {d}") | |
except Exception as e: | |
logger.error(f"Failed to create {d}: {e}") | |
print(f"{red(f'Error: Failed to create {d}: {e}')}") | |
sys.exit(1) | |
# Initialize files | |
for f in (VIDEO_INFO_FILE, SAVED_PROMPTS_FILE, PROMPT_LOG_FILE, INSTALL_LOG_FILE, LAST_CLEANUP_FILE): | |
if not os.path.exists(f): | |
try: | |
if f == LAST_CLEANUP_FILE: | |
with open(f, "w") as fd: | |
fd.write(str(time.time())) | |
elif f in (VIDEO_INFO_FILE, SAVED_PROMPTS_FILE): | |
with open(f, "w") as fd: | |
json.dump([], fd) | |
else: | |
open(f, "w").close() | |
os.chmod(f, 0o664) | |
logger.debug(f"Created {f}") | |
except Exception as e: | |
logger.error(f"Failed to create/chmod {f}: {e}") | |
print(f"{red(f'Error: Failed to create/chmod {f}: {e}')}") | |
sys.exit(1) | |
# Clear VIDEO_INFO_FILE on startup | |
try: | |
with open(VIDEO_INFO_FILE, "w") as f: | |
json.dump([], f) | |
os.chmod(VIDEO_INFO_FILE, 0o664) | |
logger.debug(f"Cleared {VIDEO_INFO_FILE}") | |
except Exception as e: | |
logger.error(f"Failed to clear {VIDEO_INFO_FILE}: {e}") | |
print(f"{red(f'Error: Failed to clear {VIDEO_INFO_FILE}: {e}')}") | |
sys.exit(1) | |
# Queue clearing utility | |
def clear_queue(q): | |
try: | |
while True: | |
if hasattr(q, "get_nowait"): | |
q.get_nowait() | |
else: | |
break | |
except queue.Empty: | |
pass | |
# Prompt utilities | |
def get_last_prompts(): | |
try: | |
return json.load(open(SAVED_PROMPTS_FILE))[-5:][::-1] | |
except Exception as e: | |
logger.error(f"Failed to load prompts from {SAVED_PROMPTS_FILE}: {e}") | |
print(f"{red(f'Error: Failed to load prompts: {e}')}") | |
return [] | |
def save_prompt_fn(prompt, n_p): | |
if not prompt: | |
return f"{red('β No prompt')}" | |
try: | |
data = json.load(open(SAVED_PROMPTS_FILE)) | |
entry = {"prompt": prompt, "negative": n_p} | |
if entry not in data: | |
data.append(entry) | |
with open(SAVED_PROMPTS_FILE, "w") as f: | |
json.dump(data, f, indent=2) | |
os.chmod(SAVED_PROMPTS_FILE, 0o664) | |
return f"{green('β Saved')}" | |
except Exception as e: | |
logger.error(f"Failed to save prompt to {SAVED_PROMPTS_FILE}: {e}") | |
print(f"{red(f'Error: Failed to save prompt: {e}')}") | |
return f"{red('β Save failed')}" | |
def load_prompt_fn(idx): | |
lst = get_last_prompts() | |
return lst[idx]["prompt"] if idx < len(lst) else "" | |
# Cleanup utilities | |
def clear_temp_videos(): | |
try: | |
for f in os.listdir(VIDEO_TMP_DIR): | |
os.remove(os.path.join(VIDEO_TMP_DIR, f)) | |
return f"{green('β Temp cleared')}" | |
except Exception as e: | |
logger.error(f"Failed to clear temp videos in {VIDEO_TMP_DIR}: {e}") | |
print(f"{red(f'Error: Failed to clear temp videos: {e}')}") | |
return f"{red('β Clear failed')}" | |
def clear_old_files(): | |
cutoff = time.time() - 7 * 24 * 3600 | |
c = 0 | |
try: | |
for d in (VIDEO_TMP_DIR, VIDEO_IMG_DIR, VIDEO_OUTPUT_DIR): | |
for f in os.listdir(d): | |
p = os.path.join(d, f) | |
if os.path.isfile(p) and os.path.getmtime(p) < cutoff: | |
os.remove(p) | |
c += 1 | |
with open(LAST_CLEANUP_FILE, "w") as f: | |
f.write(str(time.time())) | |
os.chmod(LAST_CLEANUP_FILE, 0o664) | |
return f"{green(f'β {c} old files removed')}" | |
except Exception as e: | |
logger.error(f"Failed to clear old files: {e}") | |
print(f"{red(f'Error: Failed to clear old files: {e}')}") | |
return f"{red('β Clear failed')}" | |
def clear_images(): | |
try: | |
for f in os.listdir(VIDEO_IMG_DIR): | |
os.remove(os.path.join(VIDEO_IMG_DIR, f)) | |
return f"{green('β Images cleared')}" | |
except Exception as e: | |
logger.error(f"Failed to clear images in {VIDEO_IMG_DIR}: {e}") | |
print(f"{red(f'Error: Failed to clear images: {e}')}") | |
return f"{red('β Clear failed')}" | |
def clear_videos(): | |
try: | |
for f in os.listdir(VIDEO_OUTPUT_DIR): | |
os.remove(os.path.join(VIDEO_OUTPUT_DIR, f)) | |
return f"{green('β Videos cleared')}" | |
except Exception as e: | |
logger.error(f"Failed to clear videos in {VIDEO_OUTPUT_DIR}: {e}") | |
print(f"{red(f'Error: Failed to clear videos: {e}')}") | |
return f"{red('β Clear failed')}" | |
def check_and_run_weekly_cleanup(): | |
try: | |
with open(LAST_CLEANUP_FILE, "r") as f: | |
last_cleanup = float(f.read().strip()) | |
except (FileNotFoundError, ValueError): | |
last_cleanup = 0 | |
if time.time() - last_cleanup > 7 * 24 * 3600: | |
return clear_old_files() | |
return "" | |
# Video metadata utilities | |
def save_video_info(prompt, n_p, filename, seed, secs, additional_info, completed=False): | |
if not completed: | |
return | |
try: | |
video_info = json.load(open(VIDEO_INFO_FILE)) | |
except (FileNotFoundError, json.JSONDecodeError): | |
video_info = [] | |
entry = { | |
"prompt": prompt or "", | |
"negative_prompt": n_p or "", | |
"filename": filename, | |
"location": os.path.join(VIDEO_OUTPUT_DIR, filename), | |
"seed": seed, | |
"duration_secs": secs, | |
"timestamp": time.strftime("%Y%m%d_%H%M%S"), | |
"completed": completed, | |
"additional_info": additional_info or {}, | |
} | |
video_info.append(entry) | |
try: | |
with open(VIDEO_INFO_FILE, "w") as f: | |
json.dump(video_info, f, indent=2) | |
os.chmod(VIDEO_INFO_FILE, 0o664) | |
logger.debug(f"Saved video info to {VIDEO_INFO_FILE}") | |
except Exception as e: | |
logger.error(f"Failed to save video info to {VIDEO_INFO_FILE}: {e}") | |
print(f"{red(f'Error: Failed to save video info to {VIDEO_INFO_FILE}: {e}')}") | |
raise | |
# Gallery helpers | |
def list_images(): | |
return sorted( | |
[os.path.join(VIDEO_IMG_DIR, f) for f in os.listdir(VIDEO_IMG_DIR) if f.lower().endswith((".png", ".jpg"))], | |
key=os.path.getmtime, | |
) | |
def list_videos(): | |
return sorted( | |
[os.path.join(VIDEO_OUTPUT_DIR, f) for f in os.listdir(VIDEO_OUTPUT_DIR) if f.lower().endswith(".mp4")], | |
key=os.path.getmtime, | |
) | |
def load_image(sel): | |
imgs = list_images() | |
if sel in [os.path.basename(p) for p in imgs]: | |
pth = imgs[[os.path.basename(p) for p in imgs].index(sel)] | |
return gr.update(value=pth), gr.update(value=os.path.basename(pth)) | |
return gr.update(), gr.update() | |
def load_video(sel): | |
vids = list_videos() | |
if sel in [os.path.basename(p) for p in vids]: | |
pth = vids[[os.path.basename(p) for p in vids].index(sel)] | |
return gr.update(value=pth), gr.update(value=os.path.basename(pth)) | |
return gr.update(), gr.update() | |
def next_image_and_load(sel): | |
imgs = list_images() | |
if not imgs: | |
return gr.update(), gr.update() | |
names = [os.path.basename(i) for i in imgs] | |
idx = (names.index(sel) + 1) % len(names) if sel in names else 0 | |
pth = imgs[idx] | |
return gr.update(value=pth), gr.update(value=os.path.basename(pth)) | |
def next_video_and_load(sel): | |
vids = list_videos() | |
if not vids: | |
return gr.update(), gr.update() | |
names = [os.path.basename(v) for v in vids] | |
idx = (names.index(sel) + 1) % len(names) if sel in names else 0 | |
pth = vids[idx] | |
return gr.update(value=pth), gr.update(value=os.path.basename(pth)) | |
def gallery_image_select(evt: gr.SelectData): | |
imgs = list_images() | |
if evt.index is not None and evt.index < len(imgs): | |
pth = imgs[evt.index] | |
return gr.update(value=pth), gr.update(value=os.path.basename(pth)) | |
return gr.update(), gr.update() | |
def gallery_video_select(evt: gr.SelectData): | |
vids = list_videos() | |
if evt.index is not None and evt.index < len(vids): | |
pth = vids[evt.index] | |
return gr.update(value=pth), gr.update(value=os.path.basename(pth)) | |
return gr.update(), gr.update() | |
# Install status | |
def check_mod(n): | |
return importlib.util.find_spec(n) is not None | |
def status_xformers(): | |
print(f"{green('β Xformers is installed!')}" if check_mod("xformers") else f"{red('β Xformers is not installed!')}") | |
return f"{green('β xformers')}" if check_mod("xformers") else f"{red('β xformers')}" | |
def status_sage(): | |
print(f"{green('β Sage Attn is installed!')}" if check_mod("sageattention") else f"{red('β Sage Attn is not installed!')}") | |
return f"{green('β sage-attn')}" if check_mod("sageattention") else f"{red('β sage-attn')}" | |
def status_flash(): | |
print(f"{yellow('β οΈ Flash Attn is not installed, performance may be reduced!')}" if not check_mod("flash_attn") else f"{green('β Flash Attn is installed!')}") | |
return f"{yellow('β οΈ flash-attn')}" if not check_mod("flash_attn") else f"{green('β flash-attn')}" | |
def status_colorama(): | |
return f"{green('β colorama')}" if COLORAMA_AVAILABLE else f"{red('β colorama')}" | |
def install_pkg(pkg, warn=None): | |
if warn: | |
print(f"{yellow(warn)}") | |
time.sleep(1) | |
try: | |
out = subprocess.check_output( | |
[sys.executable, "-m", "pip", "install", pkg], stderr=subprocess.STDOUT, text=True | |
) | |
res = f"{green(f'β {pkg}')}\n{out}\n" | |
except subprocess.CalledProcessError as e: | |
res = f"{red(f'β {pkg}')}\n{e.output}\n" | |
with open(INSTALL_LOG_FILE, "a") as f: | |
f.write(f"[{pkg}] {res}") | |
return res | |
install_xformers = lambda: install_pkg("xformers") | |
install_sage_attn = lambda: install_pkg("sage-attn") | |
install_flash_attn = lambda: install_pkg("flash-attn", "β οΈ long compile, optional for performance") | |
install_colorama = lambda: install_pkg("colorama") | |
refresh_logs = lambda: open(INSTALL_LOG_FILE).read() | |
clear_logs = lambda: open(INSTALL_LOG_FILE, "w").close() or f"{green('β Logs cleared')}" | |
# Model load | |
free_mem = get_cuda_free_memory_gb(gpu) | |
hv = free_mem > 60 | |
logger.info(f"VRAM available: {free_mem:.2f} GB, High VRAM mode: {hv}") | |
print(f"{yellow(f'VRAM available: {free_mem:.2f} GB, High VRAM mode: {hv}')}") | |
try: | |
print(f"{yellow('Loading models...')}") | |
text_encoder = LlamaModel.from_pretrained( | |
"hunyuanvideo-community/HunyuanVideo", subfolder="text_encoder", torch_dtype=torch.float16, token=HF_TOKEN, cache_dir="/tmp/hf_cache" | |
).cpu().eval() | |
text_encoder_2 = CLIPTextModel.from_pretrained( | |
"hunyuanvideo-community/HunyuanVideo", subfolder="text_encoder_2", torch_dtype=torch.float16, token=HF_TOKEN, cache_dir="/tmp/hf_cache" | |
).cpu().eval() | |
tokenizer = LlamaTokenizerFast.from_pretrained( | |
"hunyuanvideo-community/HunyuanVideo", subfolder="tokenizer", token=HF_TOKEN, cache_dir="/tmp/hf_cache" | |
) | |
tokenizer_2 = CLIPTokenizer.from_pretrained( | |
"hunyuanvideo-community/HunyuanVideo", subfolder="tokenizer_2", token=HF_TOKEN, cache_dir="/tmp/hf_cache" | |
) | |
vae = AutoencoderKLHunyuanVideo.from_pretrained( | |
"hunyuanvideo-community/HunyuanVideo", subfolder="vae", torch_dtype=torch.float16, token=HF_TOKEN, cache_dir="/tmp/hf_cache" | |
).cpu().eval() | |
feature_extractor = SiglipImageProcessor.from_pretrained( | |
"lllyasviel/flux_redux_bfl", subfolder="feature_extractor", token=HF_TOKEN, cache_dir="/tmp/hf_cache" | |
) | |
image_encoder = SiglipVisionModel.from_pretrained( | |
"lllyasviel/flux_redux_bfl", subfolder="image_encoder", torch_dtype=torch.float16, token=HF_TOKEN, cache_dir="/tmp/hf_cache" | |
).cpu().eval() | |
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained( | |
"lllyasviel/FramePack_F1_I2V_HY_20250503", torch_dtype=torch.bfloat16, token=HF_TOKEN, cache_dir="/tmp/hf_cache" | |
).cpu().eval() | |
logger.info("Models loaded successfully") | |
print(f"{green('Models loaded successfully')}") | |
except Exception as e: | |
logger.error(f"Failed to load models: {e}", exc_info=True) | |
print(f"{red(f'Error: Failed to load models: {e}')}") | |
raise | |
if not hv: | |
vae.enable_slicing() | |
vae.enable_tiling() | |
transformer.high_quality_fp32_output_for_inference = True | |
transformer.to(dtype=torch.bfloat16) | |
for m in (vae, image_encoder, text_encoder, text_encoder_2): | |
m.to(dtype=torch.float16) | |
for m in (vae, image_encoder, text_encoder, text_encoder_2, transformer): | |
m.requires_grad_(False) | |
if not hv: | |
DynamicSwapInstaller.install_model(transformer, device=gpu) | |
DynamicSwapInstaller.install_model(text_encoder, device=gpu) | |
else: | |
for m in (vae, image_encoder, text_encoder, text_encoder_2, transformer): | |
m.to(gpu) | |
logger.debug("Models configured and moved to device") | |
print(f"{green('Models configured and moved to device')}") | |
# FastAPI Setup | |
app = FastAPI(title="GhostPack F1 Pro API") | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
async def verify_api_key(api_key: str = Security(api_key_header)): | |
if api_key != API_KEY: | |
raise HTTPException( | |
status_code=status.HTTP_401_UNAUTHORIZED, | |
detail="Invalid API key" | |
) | |
return api_key | |
class GenerateRequest(BaseModel): | |
prompt: str | |
negative_prompt: str | |
seed: int | |
video_length: float | |
latent_window: int | |
steps: int | |
cfg: float | |
distilled_cfg: float | |
cfg_rescale: float | |
gpu_keep: float | |
crf: int | |
use_teacache: bool | |
camera_action: str | |
disable_prompt_mods: bool | |
link_steps_window: bool | |
async def health_check(): | |
try: | |
return JSONResponse(content={"status": "healthy"}) | |
except Exception as e: | |
logger.error(f"Health check failed: {e}", exc_info=True) | |
return JSONResponse(content={"error": str(e), "status": "error"}, status_code=500) | |
async def test_server(): | |
try: | |
report = { | |
"server_status": { | |
"version": VERSION, | |
"host": args.server, | |
"port": args.port, | |
"uptime": time.time() - time.time() if job_status else 0, | |
"active_jobs": len(active_jobs), | |
"api_status": "running", | |
}, | |
"system": { | |
"vram_total": free_mem, | |
"vram_free": get_cuda_free_memory_gb(gpu), | |
"high_vram_mode": hv, | |
"cuda_available": torch.cuda.is_available(), | |
"cuda_device": torch.cuda.get_device_name(gpu) if torch.cuda.is_available() else "N/A", | |
}, | |
"models": { | |
"text_encoder": text_encoder is not None, | |
"text_encoder_2": text_encoder_2 is not None, | |
"vae": vae is not None, | |
"image_encoder": image_encoder is not None, | |
"transformer": transformer is not None, | |
"tokenizer": tokenizer is not None, | |
"tokenizer_2": tokenizer_2 is not None, | |
"feature_extractor": feature_extractor is not None, | |
}, | |
"paths": { | |
"base": BASE, | |
"images": VIDEO_IMG_DIR, | |
"videos": VIDEO_OUTPUT_DIR, | |
"temp": VIDEO_TMP_DIR, | |
"data": DATA_DIR, | |
"prompt_log": PROMPT_LOG_FILE, | |
"saved_prompts": SAVED_PROMPTS_FILE, | |
"install_log": INSTALL_LOG_FILE, | |
"video_info": VIDEO_INFO_FILE, | |
}, | |
"file_system": { | |
"images_writable": os.access(VIDEO_IMG_DIR, os.W_OK), | |
"videos_writable": os.access(VIDEO_OUTPUT_DIR, os.W_OK), | |
"temp_writable": os.access(VIDEO_TMP_DIR, os.W_OK), | |
"data_writable": os.access(DATA_DIR, os.W_OK), | |
}, | |
"dependencies": { | |
"xformers": status_xformers(), | |
"sage_attn": status_sage(), | |
"flash_attn": status_flash(), | |
"colorama": status_colorama(), | |
}, | |
"health_check": {"status": "pass", "details": ""} | |
} | |
try: | |
dummy_img = np.zeros((64, 64, 3), dtype=np.uint8) | |
img_pt = (torch.from_numpy(dummy_img).float() / 127.5 - 1).permute(2, 0, 1)[None, :, None] | |
if not hv: | |
load_model_as_complete(vae, gpu) | |
_ = vae_encode(img_pt, vae) | |
report["health_check"]["status"] = "pass" | |
except Exception as e: | |
report["health_check"]["status"] = "fail" | |
report["health_check"]["details"] = str(e) | |
logger.error(f"Health check failed: {e}", exc_info=True) | |
logger.info("Test endpoint accessed successfully") | |
print(f"{green(f'Test endpoint accessed: API running on {args.server}:{args.port}')}") | |
return JSONResponse(content=report) | |
except Exception as e: | |
logger.error(f"Test endpoint error: {e}", exc_info=True) | |
print(f"{red(f'Test endpoint error: {e}')}") | |
return JSONResponse( | |
content={"error": str(e), "status": "fail"}, | |
status_code=500 | |
) | |
async def get_status(job_id: str, api_key: str = Depends(verify_api_key)): | |
try: | |
status = job_status.get(job_id, {"status": "not_found", "progress": 0.0, "render_time": 0}) | |
return JSONResponse( | |
content={ | |
"job_id": job_id, | |
"render_status": status["status"], | |
"render_progress": status["progress"], | |
"render_time": status["render_time"], | |
"active_jobs": len(active_jobs), | |
"api_status": "running", | |
} | |
) | |
except Exception as e: | |
logger.error(f"Status check failed for job {job_id}: {e}", exc_info=True) | |
return JSONResponse( | |
content={"error": str(e), "job_id": job_id, "status": "error"}, | |
status_code=500 | |
) | |
async def stop_render(job_id: str, api_key: str = Depends(verify_api_key)): | |
if job_id not in active_jobs: | |
logger.info(f"No active job {job_id} to stop") | |
print(f"{yellow(f'No active job {job_id} to stop')}") | |
return JSONResponse(content={"message": f"No active job {job_id}"}) | |
stream = active_jobs[job_id] | |
stream.stop() | |
active_jobs.pop(job_id, None) | |
job_status[job_id]["status"] = "stopped" | |
job_status[jid]["progress"] = 0.0 | |
logger.info(f"Stopped job {job_id}") | |
print(f"{yellow(f'Stopped job {job_id}')}") | |
return JSONResponse(content={"message": f"Job {job_id} stopped"}) | |
async def get_videos(api_key: str = Depends(verify_api_key)): | |
try: | |
videos = [f for f in os.listdir(VIDEO_OUTPUT_DIR) if f.lower().endswith(".mp4")] | |
return JSONResponse(content={"status": "success", "videos": videos}) | |
except Exception as e: | |
logger.error(f"Failed to list videos: {e}", exc_info=True) | |
return JSONResponse(content={"error": str(e), "status": "error"}, status_code=500) | |
async def generate_video( | |
image_file: UploadFile = File(...), | |
prompt: str = Form(""), | |
negative_prompt: str = Form(""), | |
seed: int = Form(31337), | |
video_length: float = Form(8.0), | |
latent_window: int = Form(3), | |
steps: int = Form(12), | |
cfg: float = Form(1.0), | |
distilled_cfg: float = Form(7.0), | |
cfg_rescale: float = Form(0.5), | |
gpu_keep: float = Form(6.0), | |
crf: int = Form(20), | |
use_teacache: bool = Form(True), | |
camera_action: str = Form("Static Camera"), | |
disable_prompt_mods: bool = Form(False), | |
link_steps_window: bool = Form(True), | |
api_key: str = Depends(verify_api_key) | |
): | |
params = { | |
"prompt": prompt, | |
"negative_prompt": negative_prompt, | |
"seed": seed, | |
"video_length": video_length, | |
"latent_window": latent_window, | |
"steps": steps, | |
"cfg": cfg, | |
"distilled_cfg": distilled_cfg, | |
"cfg_rescale": cfg_rescale, | |
"gpu_keep": gpu_keep, | |
"crf": crf, | |
"use_teacache": use_teacache, | |
"camera_action": camera_action, | |
"disable_prompt_mods": disable_prompt_mods, | |
"link_steps_window": link_steps_window | |
} | |
logger.info(f"Received /generate request with parameters: {json.dumps(params, indent=2)}") | |
print(f"{green(f'API: Received /generate request with parameters: {json.dumps(params, indent=2)}')}") | |
if not render_on_off: | |
logger.info("Render disabled by client") | |
print(f"{red('API: Render disabled by client')}") | |
return JSONResponse(content={"status": "render_disabled", "error": "Rendering disabled"}, status_code=403) | |
jid = str(uuid.uuid4()) | |
logger.info(f"Starting job {jid} with prompt: {prompt}") | |
print(f"{green(f'API: Starting job ID: {jid}')}") | |
stream = AsyncStream() | |
active_jobs[jid] = stream | |
job_status[jid] = {"status": "rendering", "progress": 0.0, "render_time": 0} | |
try: | |
logger.debug("Processing uploaded image file") | |
print(f"{yellow('API: Processing uploaded image file')}") | |
img_data = await image_file.read() | |
if not img_data: | |
logger.error("Empty image file") | |
print(f"{red('API: Empty image file')}") | |
raise HTTPException(status_code=400, detail="Empty image file") | |
try: | |
img = Image.open(io.BytesIO(img_data)).convert('RGB') | |
img_np = np.array(img) | |
if img_np.shape[0] < 64 or img_np.shape[1] < 64: | |
logger.error("Image dimensions too small") | |
print(f"{red('API: Image dimensions too small (minimum 64x64)')}") | |
raise HTTPException(status_code=400, detail="Image dimensions must be at least 64x64") | |
except Exception as e: | |
logger.error(f"Invalid image: {str(e)}") | |
print(f"{red(f'API: Invalid image: {str(e)}')}") | |
raise HTTPException(status_code=400, detail=f"Invalid image: {str(e)}") | |
if get_cuda_free_memory_gb(gpu) < 2: | |
logger.error("Insufficient VRAM for processing") | |
print(f"{red('API: Insufficient VRAM (<2GB). Lower gpu_keep or latent_window.')}") | |
raise HTTPException(status_code=500, detail="Low VRAM (<2GB). Lower 'gpu_keep' or 'latent_window'.") | |
logger.info(f"Passing to worker: seed={seed}, video_length={video_length}, latent_window={latent_window}, steps={steps}, cfg={cfg}, distilled_cfg={distilled_cfg}") | |
print(f"{yellow(f'API: Passing to worker: seed={seed}, video_length={video_length}, latent_window={latent_window}, steps={steps}, cfg={cfg}, distilled_cfg={distilled_cfg}')}") | |
final_video_path = worker( | |
img_np=img_np, | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
seed=seed, | |
secs=video_length, | |
win=latent_window, | |
stp=steps, | |
cfg=cfg, | |
gsc=distilled_cfg, | |
rsc=cfg_rescale, | |
keep=gpu_keep, | |
tea=use_teacache, | |
crf=crf, | |
camera_action=camera_action, | |
disable_prompt_mods=disable_prompt_mods, | |
link_steps_window=link_steps_window, | |
stream=stream, | |
jid=jid | |
) | |
if final_video_path is None: | |
logger.error("Render stopped or failed") | |
print(f"{red('API: Render stopped or failed')}") | |
raise HTTPException(status_code=500, detail="Render stopped or failed") | |
final_filename = os.path.basename(final_video_path) | |
with open(final_video_path, "rb") as f: | |
video_data = base64.b64encode(f.read()).decode("utf-8") | |
save_video_info( | |
prompt=prompt, | |
n_p=negative_prompt, | |
filename=final_filename, | |
seed=seed, | |
secs=video_length, | |
additional_info={"camera_action": camera_action, "job_id": jid}, | |
completed=True | |
) | |
response_info = { | |
"status": "success", | |
"job_id": jid, | |
"video_data": video_data, | |
"metadata": { | |
"prompt": prompt, | |
"negative_prompt": negative_prompt, | |
"seed": seed, | |
"duration_secs": video_length, | |
"timestamp": time.strftime("%Y%m%d_%H%M%S"), | |
"render_time_secs": job_status[jid]["render_time"], | |
"camera_action": camera_action, | |
"latent_window": latent_window, | |
"steps": steps, | |
"cfg": cfg, | |
"distilled_cfg": distilled_cfg, | |
"cfg_rescale": cfg_rescale, | |
"gpu_keep": gpu_keep, | |
"crf": crf, | |
"use_teacache": use_teacache, | |
"disable_prompt_mods": disable_prompt_mods, | |
"link_steps_window": link_steps_window | |
} | |
} | |
logger.info(f"Video generated: {final_video_path}") | |
print(f"{green(f'API: Video generated: {final_video_path}')}") | |
return JSONResponse(content=response_info) | |
except Exception as e: | |
logger.error(f"Generate failed: {e}", exc_info=True) | |
print(f"{red(f'API: Error during /generate: {str(e)}')}") | |
job_status[jid]["status"] = "error" | |
job_status[jid]["progress"] = 0.0 | |
stream.output_queue.push(("end", str(e))) | |
return JSONResponse( | |
content={"error": str(e), "job_id": jid, "status": "error"}, | |
status_code=500 | |
) | |
finally: | |
active_jobs.pop(jid, None) | |
clear_queue(stream.input_queue) | |
clear_queue(stream.output_queue) | |
if job_status.get(jid, {}).get("status") not in ["complete", "error", "stopped"]: | |
job_status[jid]["status"] = "complete" | |
torch.cuda.empty_cache() | |
def worker(img_np, prompt, negative_prompt, seed, secs, win, stp, cfg, gsc, rsc, keep, tea, crf, camera_action, disable_prompt_mods, link_steps_window, stream, jid): | |
start_time = time.time() | |
job_status[jid] = {"status": "rendering", "progress": 0.0, "render_time": 0} | |
max_sections = 100 | |
logger.info(f"Worker started for job {jid} with secs={secs}, win={win}, cfg={cfg}, distilled_cfg={gsc}") | |
print(f"{green(f'API: Starting video generation, job ID: {jid}, secs={secs}, win={win}, cfg={cfg}, distilled_cfg={gsc}')}") | |
try: | |
if img_np.shape[0] < 64 or img_np.shape[1] < 64: | |
raise ValueError("Image dimensions too small (minimum 64x64)") | |
if secs > 10: | |
logger.warning("Video length > 10s capped at 10s") | |
print(f"{yellow('API: Video length > 10s capped at 10s')}") | |
secs = min(secs, 10) | |
if win > 10: | |
logger.warning("Latent window > 10 capped at 10") | |
print(f"{yellow('API: Latent window > 10 capped at 10')}") | |
win = min(win, 10) | |
if get_cuda_free_memory_gb(gpu) < 2: | |
raise ValueError("Low VRAM (<2GB). Lower 'gpu_keep' or 'latent_window'.") | |
try: | |
if hasattr(stream.input_queue, "qsize") and stream.input_queue.qsize() > 0: | |
if stream.input_queue.get_nowait() == "end": | |
stream.output_queue.push(("end", "Job stopped by client")) | |
job_status[jid]["status"] = "stopped" | |
return None | |
except queue.Empty: | |
pass | |
if not disable_prompt_mods: | |
if "stop" not in prompt.lower() and secs > 3: | |
prompt += " The subject stops moving after 3 seconds." | |
if "smooth" not in prompt.lower(): | |
prompt = f"Smooth animation: {prompt}" | |
if "silent" not in prompt.lower(): | |
prompt += ", silent" | |
prompt = update_prompt(prompt, camera_action) | |
if len(prompt.split()) > 50: | |
logger.warning("Complex prompt may slow rendering") | |
print(f"{yellow('API: Warning: Complex prompt may slow rendering')}") | |
try: | |
with open(PROMPT_LOG_FILE, "a") as f: | |
f.write(f"{jid}\t{prompt}\t{negative_prompt}\n") | |
os.chmod(PROMPT_LOG_FILE, 0o664) | |
except Exception as e: | |
logger.error(f"Failed to write to {PROMPT_LOG_FILE}: {e}") | |
print(f"{red(f'API: Failed to write prompt log: {e}')}") | |
raise | |
stream.output_queue.push(('progress', (None, "", make_progress_bar_html(0, "Start")))) | |
if not hv: | |
unload_complete_models(text_encoder, text_encoder_2, image_encoder, vae, transformer) | |
fake_diffusers_current_device(text_encoder, gpu) | |
load_model_as_complete(text_encoder_2, gpu) | |
lv, cp = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2) | |
if cfg == 1: | |
lv_n = torch.zeros_like(lv) | |
cp_n = torch.zeros_like(cp) | |
else: | |
lv_n, cp_n = encode_prompt_conds(negative_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2) | |
lv, m = crop_or_pad_yield_mask(lv, 512) | |
lv_n, m_n = crop_or_pad_yield_mask(lv_n, 512) | |
lv, cp, lv_n, cp_n = [x.to(torch.bfloat16) for x in (lv, cp, lv_n, cp_n)] | |
logger.debug(f"Prompt embeddings: lv={lv.shape}, cp={cp.shape}, lv_n={lv_n.shape}, cp_n={cp_n.shape}") | |
torch.cuda.empty_cache() | |
H, W, _ = img_np.shape | |
h, w = H, W | |
img_filename = f"{jid}.png" | |
try: | |
Image.fromarray(img_np).save(os.path.join(VIDEO_IMG_DIR, img_filename)) | |
os.chmod(os.path.join(VIDEO_IMG_DIR, img_filename), 0o664) | |
except Exception as e: | |
logger.error(f"Failed to save image {img_filename}: {e}") | |
print(f"{red(f'API: Failed to save image: {e}')}") | |
raise | |
img_pt = (torch.from_numpy(img_np).float() / 127.5 - 1).permute(2, 0, 1)[None, :, None] | |
logger.debug(f"Image tensor shape: {img_pt.shape}") | |
if not hv: | |
load_model_as_complete(vae, gpu) | |
start_lat = vae_encode(img_pt, vae) | |
logger.debug(f"VAE encoded latent shape: {start_lat.shape}") | |
if not hv: | |
load_model_as_complete(image_encoder, gpu) | |
img_emb = hf_clip_vision_encode(img_np, feature_extractor, image_encoder).last_hidden_state.to(torch.bfloat16) | |
logger.debug(f"Image embedding shape: {img_emb.shape}") | |
torch.cuda.empty_cache() | |
gen = torch.Generator("cpu").manual_seed(seed) | |
sections = max(round((secs * 30) / (win * 4)), 1) | |
if sections > max_sections: | |
logger.error(f"Too many sections ({sections}) for job {jid}") | |
print(f"{red(f'API: Too many sections ({sections}) for job {jid}')}") | |
raise ValueError(f"Too many sections ({sections})") | |
logger.info(f"Job {jid} sections: {sections}, pad_seq: {[3] + [2] * (sections - 3) + [1, 0] if sections > 4 else list(reversed(range(sections)))}") | |
hist_lat = torch.zeros((1, 16, 1 + 2 + 16, h // 8, w // 8), dtype=torch.float16).cpu() | |
hist_px = None | |
total = 0 | |
pad_seq = [3] + [2] * (sections - 3) + [1, 0] if sections > 4 else list(reversed(range(sections))) | |
section_count = 0 | |
for pad in pad_seq: | |
section_count += 1 | |
if section_count > max_sections: | |
logger.error(f"Max sections ({max_sections}) exceeded for job {jid}") | |
print(f"{red(f'API: Max sections ({max_sections}) exceeded for job {jid}')}") | |
raise ValueError(f"Max sections ({max_sections}) exceeded") | |
last = pad == 0 | |
logger.info(f"Job {jid} processing pad: {pad}, last: {last}") | |
def cb(d): | |
if job_status[jid]["status"] == "complete": | |
return | |
pv = vae_decode_fake(d["denoised"]) | |
pv = (pv * 255).cpu().numpy().clip(0, 255).astype(np.uint8) | |
pv = einops.rearrange(pv, "b c t h w -> (b h) (t w) c") | |
cur = d["i"] + 1 | |
job_status[jid]["progress"] = (cur / stp) * 100 | |
progress_message = f"API: Job {jid} Progress {cur}/{stp} ({job_status[jid]['progress']:.1f}%)" | |
logger.info(progress_message) | |
print(yellow(progress_message)) | |
stream.output_queue.push(('progress', (pv, f"{cur}/{stp}", make_progress_bar_html(int(100 * cur / stp), f"{cur}/{stp}")))) | |
try: | |
if hasattr(stream.input_queue, "qsize") and stream.input_queue.qsize() > 0: | |
if stream.input_queue.get_nowait() == "end": | |
stream.output_queue.push(("end", "Job stopped by client")) | |
raise KeyboardInterrupt | |
except queue.Empty: | |
pass | |
idx = torch.arange(0, sum([1, pad * win, win, 1, 2, 16]))[None].to(device=gpu) | |
a, b, c, d, e, f = idx.split([1, pad * win, win, 1, 2, 16], 1) | |
clean_idx = torch.cat([a, d], 1) | |
pre = start_lat.to(hist_lat) | |
post, two, four = hist_lat[:, :, :1 + 2 + 16].split([1, 2, 16], 2) | |
clean = torch.cat([pre, post], 2) | |
if not hv: | |
unload_complete_models() | |
move_model_to_device_with_memory_preservation(transformer, gpu, keep) | |
transformer.initialize_teacache(tea, stp) | |
new_lat = sample_hunyuan( | |
transformer=transformer, sampler="unipc", width=w, height=h, frames=win * 4 - 3, | |
real_guidance_scale=cfg, distilled_guidance_scale=gsc, guidance_rescale=rsc, | |
num_inference_steps=stp, generator=gen, | |
prompt_embeds=lv, prompt_embeds_mask=m, prompt_poolers=cp, | |
negative_prompt_embeds=lv_n, negative_prompt_embeds_mask=m_n, negative_prompt_poolers=cp_n, | |
device=gpu, dtype=torch.bfloat16, image_embeddings=img_emb, | |
latent_indices=c, clean_latents=clean, clean_latent_indices=clean_idx, | |
clean_latents_2x=two, clean_latent_2x_indices=e, | |
clean_latents_4x=four, clean_latent_4x_indices=f, callback=cb | |
) | |
if last: | |
new_lat = torch.cat([start_lat.to(new_lat), new_lat], 2) | |
total += new_lat.shape[2] | |
hist_lat = torch.cat([new_lat.to(hist_lat), hist_lat], 2) | |
if not hv: | |
offload_model_from_device_for_memory_preservation(transformer, gpu, 8) | |
load_model_as_complete(vae, gpu) | |
real = hist_lat[:, :, :total] | |
if hist_px is None: | |
hist_px = vae_decode(real, vae).cpu() | |
else: | |
overlap = win * 4 - 3 | |
curr = vae_decode(real[:, :, :win * 2], vae).cpu() | |
hist_px = soft_append_bcthw(curr, hist_px, overlap) | |
if not hv: | |
unload_complete_models() | |
tmp_path = os.path.join(VIDEO_TMP_DIR, f"{jid}_{total}.mp4") | |
save_bcthw_as_mp4(hist_px, tmp_path, fps=30, crf=crf) | |
os.chmod(tmp_path, 0o664) | |
stream.output_queue.push(('file', tmp_path)) | |
if last: | |
fin_path = os.path.join(VIDEO_OUTPUT_DIR, f"{jid}_{total}.mp4") | |
try: | |
os.replace(tmp_path, fin_path) | |
os.chmod(fin_path, 0o664) | |
job_status[jid]["status"] = "complete" | |
job_status[jid]["render_time"] = time.time() - start_time | |
stream.output_queue.push(('complete', fin_path)) | |
clear_queue(stream.input_queue) | |
clear_queue(stream.output_queue) | |
logger.info(f"Final video saved: {fin_path}, render time: {job_status[jid]['render_time']:.2f}s") | |
print(f"{green(f'API: Final video saved: {fin_path}')}") | |
return fin_path | |
except Exception as e: | |
logger.error(f"Failed to save final video: {e}") | |
print(f"{red(f'API: Failed to save final video: {e}')}") | |
raise | |
torch.cuda.empty_cache() | |
except Exception as e: | |
logger.error(f"Worker failed: {e}", exc_info=True) | |
print(f"{red(f'API: Worker error: {e}')}") | |
traceback.print_exc() | |
job_status[jid]["status"] = "error" | |
stream.output_queue.push(("end", str(e))) | |
return None | |
finally: | |
if jid in active_jobs: | |
active_jobs.pop(jid, None) | |
clear_queue(stream.input_queue) | |
clear_queue(stream.output_queue) | |
if job_status.get(jid, {}).get("status") not in ["complete", "error", "stopped"]: | |
job_status[jid]["status"] = "complete" | |
torch.cuda.empty_cache() | |
def process(img, prm, npr, sd, sec, win, stp, cfg, gsc, rsc, kee, tea, crf, disable_prompt_mods, link_steps_window): | |
if img is None: | |
raise gr.Error("Upload an image") | |
yield None, None, "", "", gr.update(interactive=False), gr.update(interactive=True) | |
stream = AsyncStream() | |
jid = str(uuid.uuid4()) | |
async_run(worker, img, prm, npr, sd, sec, win, stp, cfg, gsc, rsc, kee, tea, crf, disable_prompt_mods, link_steps_window, stream, jid) | |
out, log = None, "" | |
try: | |
while True: | |
flag, data = stream.output_queue.next() | |
if job_status.get(jid, {}).get("status") == "complete": | |
break | |
if flag == "file": | |
out = data | |
yield out, gr.update(), gr.update(), log, gr.update(interactive=False), gr.update(interactive=True) | |
if flag == "progress": | |
pv, desc, html = data | |
log = desc | |
yield gr.update(), gr.update(visible=True, value=pv), desc, html, gr.update(interactive=False), gr.update(interactive=True) | |
if flag == "complete": | |
yield data, gr.update(visible=False), "Generation complete", "", gr.update(interactive=True), gr.update(interactive=False) | |
break | |
if flag == "end": | |
yield out, gr.update(visible=False), f"Error: {data}", "", gr.update(interactive=True), gr.update(interactive=False) | |
break | |
except Exception as e: | |
logger.error(f"Process loop failed: {e}") | |
yield out, gr.update(visible=False), f"Error: {str(e)}", "", gr.update(interactive=True), gr.update(interactive=False) | |
job_status[jid]["status"] = "error" | |
finally: | |
clear_queue(stream.input_queue) | |
clear_queue(stream.output_queue) | |
torch.cuda.empty_cache() | |
def end_process(): | |
global stream | |
if stream: | |
stream.input_queue.push("end") | |
logger.info("Gradio: Render stop requested") | |
print(f"{red('Gradio: Render stop requested')}") | |
# Gradio UI (same as original) | |
quick_prompts = [ | |
["Smooth animation: A character waves for 3 seconds, then stands still for 2 seconds, static camera, silent."], | |
["Smooth animation: A character moves for 5 seconds, static camera, silent."] | |
] | |
css = make_progress_bar_css() + """ | |
.orange-button{background:#ff6200;color:#fff;border-color:#ff6200;} | |
.load-button{background:#4CAF50;color:#fff;border-color:#4CAF50;margin-left:10px;} | |
.big-setting-button{background:#0066cc;color:#fff;border:none;padding:14px 24px;font-size:18px;width:100%;border-radius:6px;margin:8px 0;} | |
.styled-dropdown{width:250px;padding:5px;border-radius:4px;} | |
.viewer-column{width:100%;max-width:900px;margin:0 auto;} | |
.media-preview img,.media-preview video{max-width:100%;height:380px;object-fit:contain;border:1px solid #444;border-radius:6px;} | |
.media-container{display:flex;gap:20px;align-items:flex-start;} | |
.control-box{min-width:220px;} | |
.control-grid{display:grid;grid-template-columns:1fr 1fr;gap:10px;} | |
.image-gallery{display:grid!important;grid-template-columns:repeat(auto-fit,minmax(300px,1fr))!important;gap:10px;padding:10px!important;overflow-y:auto!important;max-height:360px!important;} | |
.image-gallery .gallery-item{padding:10px;height:360px!important;width:300px!important;} | |
.image-gallery img{object-fit:contain;height:360px!important;width:300px!important;} | |
.video-gallery{display:grid!important;grid-template-columns:repeat(auto-fit,minmax(300px,1fr))!important;gap:10px;padding:10px!important;overflow-y:auto!important;max-height:360px!important;} | |
.video-gallery .gallery-item{padding:10px;height:360px!important;width:300px!important;} | |
.video-gallery video{object-fit:contain;height:360px!important;width:300px!important;} | |
.stop-button {background-color: #ff4d4d !important; color: white !important;} | |
""" | |
blk = gr.Blocks(css=css, title="GhostPack F1 Pro").queue() | |
with blk: | |
gr.Markdown("# π» GhostPack F1 Pro") | |
with gr.Tabs(): | |
with gr.TabItem("π» Generate"): | |
with gr.Row(): | |
with gr.Column(): | |
img_in = gr.Image(sources="upload", type="numpy", label="Image", height=320) | |
generate_button = gr.Button("Generate Video", elem_id="generate_button") | |
stop_button = gr.Button("Stop Generation", elem_id="stop_button", elem_classes="stop-button") | |
prm = gr.Textbox( | |
label="Prompt", | |
value="Smooth animation: A female stands with subtle, sensual micro-movements, breathing gently, slight head tilt, static camera, silent", | |
elem_id="prompt_input", | |
) | |
npr = gr.Textbox( | |
label="Negative Prompt", | |
value="low quality, blurry, speaking, talking, moaning, vocalizing, lip movement, mouth animation, sound, dialogue, speech, whispering, shouting, lip sync, facial animation, expressive face, verbal expression, animated mouth", | |
elem_id="negative_prompt_input", | |
) | |
save_msg = gr.Markdown("") | |
disable_prompt_mods = gr.Checkbox(label="Disable Prompt Modifications", value=False) | |
link_steps_window = gr.Checkbox(label="Link Steps and Latent Window", value=True) | |
btn_save = gr.Button("Save Prompt") | |
btn1, btn2, btn3 = ( | |
gr.Button("Load Most Recent"), | |
gr.Button("Load 2nd Recent"), | |
gr.Button("Load 3rd Recent"), | |
) | |
ds = gr.Dataset(samples=quick_prompts, label="Quick List", components=[prm]) | |
ds.click(lambda x: x[0], [ds], [prm]) | |
btn_save.click(save_prompt_fn, [prm, npr], [save_msg]) | |
btn1.click(lambda: load_prompt_fn(0), [], [prm]) | |
btn2.click(lambda: load_prompt_fn(1), [], [prm]) | |
btn3.click(lambda: load_prompt_fn(2), [], [prm]) | |
camera_action_input = gr.Dropdown( | |
choices=[ | |
"Static Camera", "Slight Orbit Left", "Slight Orbit Right", | |
"Slight Orbit Up", "Slight Orbit Down", "Top-Down View", | |
"Slight Zoom In", "Slight Zoom Out", | |
], | |
label="Camera Action", | |
value="Static Camera", | |
elem_id="camera_action_input", | |
info="Select a camera movement to append to the prompt.", | |
) | |
camera_action_input.change( | |
fn=lambda prompt, camera_action: update_prompt(prompt, camera_action), | |
inputs=[prm, camera_action_input], | |
outputs=prm, | |
) | |
with gr.Column(): | |
pv = gr.Image(label="Next Latents", height=200, visible=False) | |
vid = gr.Video(label="Finished", autoplay=True, height=500, loop=True, show_share_button=False) | |
log_md = gr.Markdown("") | |
bar = gr.HTML("") | |
with gr.Column(): | |
se = gr.Number(label="Seed", value=31337, precision=0, elem_id="seed_input") | |
sec = gr.Slider(label="Video Length (s)", minimum=1, maximum=10, value=8.0, step=0.1, elem_id="video_length_input") | |
win = gr.Slider(label="Latent Window", minimum=1, maximum=10, value=3, step=1, elem_id="latent_window_input") | |
stp = gr.Slider(label="Steps", minimum=1, maximum=100, value=12, step=1, elem_id="steps_input") | |
cfg = gr.Slider(label="CFG", minimum=1, maximum=32, value=1.7, step=0.01, elem_id="cfg_input") | |
gsc = gr.Slider(label="Distilled CFG", minimum=1, maximum=32, value=4.0, step=0.01, elem_id="distilled_cfg_input") | |
rsc = gr.Slider(label="CFG Re-Scale", minimum=0, maximum=1, value=0.5, step=0.01, elem_id="cfg_rescale_input") | |
kee = gr.Slider(label="GPU Keep (GB)", minimum=6, maximum=free_mem, value=6.5, step=0.1, elem_id="gpu_keep_input") | |
crf = gr.Slider(label="MP4 CRF", minimum=0, maximum=100, value=20, step=1, elem_id="mp4_crf_input") | |
tea = gr.Checkbox(label="Use TeaCache", value=True, elem_id="use_teacache_input") | |
generate_button.click( | |
fn=process, | |
inputs=[img_in, prm, npr, se, sec, win, stp, cfg, gsc, rsc, kee, tea, crf, disable_prompt_mods, link_steps_window], | |
outputs=[vid, pv, log_md, bar, generate_button, stop_button], | |
) | |
stop_button.click(fn=end_process) | |
gr.Button("Update Progress").click(fn=lambda: get_progress(), outputs=[log_md, bar]) | |
with gr.TabItem("πΌοΈ Image Gallery"): | |
with gr.Row(elem_classes="media-container"): | |
with gr.Column(scale=3): | |
image_preview = gr.Image( | |
label="Viewer", value=(list_images()[0] if list_images() else None), | |
interactive=False, elem_classes="media-preview", | |
) | |
with gr.Column(elem_classes="control-box"): | |
image_dropdown = gr.Dropdown( | |
choices=[os.path.basename(i) for i in list_images()], | |
value=(os.path.basename(list_images()[0]) if list_images() else None), | |
label="Select", elem_classes="styled-dropdown", | |
) | |
with gr.Row(elem_classes="control-grid"): | |
load_btn = gr.Button("Load", elem_classes="load-button") | |
next_btn = gr.Button("Next", elem_classes="load-button") | |
with gr.Row(elem_classes="control-grid"): | |
refresh_btn = gr.Button("Refresh") | |
delete_btn = gr.Button("Delete", elem_classes="orange-button") | |
image_gallery = gr.Gallery( | |
value=list_images(), label="Thumbnails", columns=6, height=360, | |
allow_preview=False, type="filepath", elem_classes="image-gallery", | |
) | |
load_btn.click(load_image, [image_dropdown], [image_preview, image_dropdown]) | |
next_btn.click(next_image_and_load, [image_dropdown], [image_preview, image_dropdown]) | |
refresh_btn.click( | |
lambda: ( | |
gr.update(choices=[os.path.basename(i) for i in list_images()], value=os.path.basename(list_images()[0]) if list_images() else None), | |
gr.update(value=list_images()[0] if list_images() else None), | |
gr.update(value=list_images()), | |
), | |
[], [image_dropdown, image_preview, image_gallery], | |
) | |
delete_btn.click( | |
lambda sel: ( | |
os.remove(os.path.join(VIDEO_IMG_DIR, sel)) if sel and os.path.exists(os.path.join(VIDEO_IMG_DIR, sel)) else None | |
) or load_image(""), | |
[image_dropdown], [image_preview, image_dropdown], | |
) | |
image_gallery.select(gallery_image_select, [], [image_preview, image_dropdown]) | |
with gr.TabItem("π¬ Video Gallery"): | |
with gr.Row(elem_classes="media-container"): | |
with gr.Column(scale=3): | |
video_preview = gr.Video( | |
label="Viewer", value=(list_videos()[0] if list_videos() else None), | |
autoplay=True, loop=True, interactive=False, elem_classes="media-preview", | |
) | |
with gr.Column(elem_classes="control-box"): | |
video_dropdown = gr.Dropdown( | |
choices=[os.path.basename(v) for v in list_videos()], | |
value=(os.path.basename(list_videos()[0]) if list_videos() else None), | |
label="Select", elem_classes="styled-dropdown", | |
) | |
with gr.Row(elem_classes="control-grid"): | |
load_vbtn = gr.Button("Load", elem_classes="load-button") | |
next_vbtn = gr.Button("Next", elem_classes="load-button") | |
with gr.Row(elem_classes="control-grid"): | |
refresh_v = gr.Button("Refresh") | |
delete_v = gr.Button("Delete", elem_classes="orange-button") | |
video_gallery = gr.Gallery( | |
value=list_videos(), label="Thumbnails", columns=6, height=360, | |
allow_preview=False, type="filepath", elem_classes="video-gallery", | |
) | |
load_vbtn.click(load_video, [video_dropdown], [video_preview, video_dropdown]) | |
next_vbtn.click(next_video_and_load, [video_dropdown], [video_preview, video_dropdown]) | |
refresh_v.click( | |
lambda: ( | |
gr.update(choices=[os.path.basename(v) for v in list_videos()], value=os.path.basename(list_videos()[0]) if list_videos() else None), | |
gr.update(value=list_videos()[0] if list_videos() else None), | |
gr.update(value=list_videos()), | |
), | |
[], [video_dropdown, video_preview, video_gallery], | |
) | |
delete_v.click( | |
lambda sel: ( | |
os.remove(os.path.join(VIDEO_OUTPUT_DIR, sel)) if sel and os.path.exists(os.path.join(VIDEO_OUTPUT_DIR, sel)) else None | |
) or load_video(""), | |
[video_dropdown], [video_preview, video_dropdown], | |
) | |
video_gallery.select(gallery_video_select, [], [video_preview, video_dropdown]) | |
with gr.TabItem("π» About"): | |
gr.Markdown("## GhostPack F1 Pro") | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("**π οΈ Description**\nImage-to-Video toolkit powered by HunyuanVideo & FramePack-F1") | |
with gr.Column(): | |
gr.Markdown(f"**π¦ Version**\n{VERSION}") | |
with gr.Column(): | |
gr.Markdown("**βοΈ Author**\nGhostAI") | |
with gr.Column(): | |
gr.Markdown("**π Repo**\nhttps://huggingface.co/spaces/ghostai1/GhostPack") | |
with gr.TabItem("βοΈ Settings"): | |
ct = gr.Button("Clear Temp", elem_classes="big-setting-button") | |
ctmsg = gr.Markdown("") | |
co = gr.Button("Clear Old", elem_classes="big-setting-button") | |
comsg = gr.Markdown("") | |
ci = gr.Button("Clear Images", elem_classes="big-setting-button") | |
cimg = gr.Markdown("") | |
cv = gr.Button("Clear Videos", elem_classes="big-setting-button") | |
cvid = gr.Markdown("") | |
ct.click(clear_temp_videos, [], ctmsg) | |
co.click(clear_old_files, [], comsg) | |
ci.click(clear_images, [], cimg) | |
cv.click(clear_videos, [], cvid) | |
with gr.TabItem("π οΈ Install"): | |
xs = gr.Textbox(value=status_xformers(), interactive=False, label="xformers") | |
bx = gr.Button("Install xformers", elem_classes="big-setting-button") | |
ss = gr.Textbox(value=status_sage(), interactive=False, label="sage-attn") | |
bs = gr.Button("Install sage-attn", elem_classes="big-setting-button") | |
fs = gr.Textbox(value=status_flash(), interactive=False, label="flash-attn") | |
bf = gr.Button("Install flash-attn", elem_classes="big-setting-button") | |
cs = gr.Textbox(value=status_colorama(), interactive=False, label="colorama") | |
bc = gr.Button("Install colorama", elem_classes="big-setting-button") | |
bx.click(install_xformers, [], xs) | |
bs.click(install_sage_attn, [], ss) | |
bf.click(install_flash_attn, [], fs) | |
bc.click(install_colorama, [], cs) | |
with gr.TabItem("π Logs"): | |
logs = gr.Textbox(lines=20, interactive=False, label="Install Logs") | |
rl = gr.Button("Refresh", elem_classes="big-setting-button") | |
cl = gr.Button("Clear", elem_classes="big-setting-button") | |
rl.click(refresh_logs, [], logs) | |
cl.click(clear_logs, [], logs) | |
gr.HTML( | |
""" | |
<script> | |
document.querySelectorAll('.video-gallery video').forEach(v => { | |
v.addEventListener('loadedmetadata', () => { | |
if (v.duration > 2) v.currentTime = 2; | |
}); | |
}); | |
</script> | |
""" | |
) | |
def update_prompt(prompt, camera_action): | |
camera_actions = [ | |
"static camera", "slight camera orbit left", "slight camera orbit right", | |
"slight camera orbit up", "slight camera orbit down", "top-down view", | |
"slight camera zoom in", "slight camera zoom out", | |
] | |
for action in camera_actions: | |
prompt = re.sub(rf",\s*{re.escape(action)}\b", "", prompt, flags=re.IGNORECASE).strip() | |
if camera_action and camera_action != "None": | |
camera_phrase = f", {camera_action.lower()}" | |
if len(prompt.split()) + len(camera_phrase.split()) <= 50: | |
return prompt + camera_phrase | |
else: | |
logger.warning(f"Prompt exceeds 50 words after adding camera action: {prompt}") | |
print(f"{yellow(f'API: Warning: Prompt exceeds 50 words with camera action')}") | |
return prompt | |
def get_progress(): | |
return f"Status: {job_status.get('latest', {'status': 'idle'})['status']}\nProgress: {job_status.get('latest', {'progress': 0.0})['progress']:.1f}%\nLast Render Time: {job_status.get('latest', {'render_time': 0})['render_time']:.1f}s" | |
# Check for port conflicts | |
if is_port_in_use(args.port): | |
logger.error(f"Port {args.port} is already in use") | |
print(f"{red(f'Error: Port {args.port} is already in use. Please stop other instances or change ports.')}") | |
sys.exit(1) | |
# Run FastAPI and optional Gradio | |
def run_api(): | |
try: | |
logger.info(f"Starting FastAPI on {args.server}:{args.port}") | |
print(f"{green(f'Starting FastAPI on {args.server}:{args.port}')}") | |
uvicorn.run(app, host=args.server, port=args.port) | |
except Exception as e: | |
logger.error(f"Failed to start FastAPI: {e}", exc_info=True) | |
print(f"{red(f'Error: Failed to start FastAPI: {e}')}") | |
sys.exit(1) | |
if __name__ == "__main__": | |
try: | |
logger.info(f"Starting GhostPack F1 Pro Server version {VERSION}") | |
print(f"Starting GhostPack F1 Pro Server version {VERSION}") | |
api_thread = Thread(target=run_api) | |
api_thread.daemon = True | |
api_thread.start() | |
time.sleep(5) | |
try: | |
response = requests.get(f"http://{args.server}:{args.port}/health", timeout=10) | |
if response.status_code != 200: | |
raise RuntimeError("FastAPI health check failed") | |
logger.info("FastAPI health check passed") | |
print(f"{green('FastAPI health check passed')}") | |
except Exception as e: | |
logger.error(f"FastAPI not ready: {e}") | |
print(f"{red(f'Error: FastAPI not ready: {e}')}") | |
sys.exit(1) | |
if args.gradio: | |
logger.info(f"Starting Gradio UI on {args.server}:7860") | |
print(f"{green(f'Starting Gradio UI on {args.server}:7860')}") | |
server = blk.launch( | |
server_name=args.server, | |
server_port=7860, | |
share=args.share, | |
inbrowser=args.inbrowser, | |
prevent_thread_lock=True, | |
allowed_paths=["/"] | |
) | |
if args.share and server.share_url: | |
logger.info(f"Public Gradio URL: {server.share_url}") | |
print(f"{yellow(f'Public Gradio URL: {server.share_url}')}") | |
logger.info(f"Gradio UI running on http://{args.server}:7860") | |
print(f"{green(f'Gradio UI running on http://{args.server}:7860')}") | |
while True: | |
time.sleep(1) | |
except KeyboardInterrupt: | |
logger.info("Shutting down gracefully") | |
print(f"{green('Shutting down gracefully')}") | |
sys.exit(0) |