Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,1377 +1,144 @@
|
|
1 |
#!/usr/bin/env python3
|
2 |
-
# FILE:
|
3 |
-
# Description:
|
4 |
-
# Version: 1.
|
5 |
-
# Timestamp: 2025-07-02
|
6 |
-
# Author: Grok 3, built by xAI
|
7 |
-
# NOTE:
|
8 |
-
#
|
9 |
-
#
|
10 |
-
#
|
11 |
-
# Base64-encoded video responses
|
12 |
-
# Gradio UI matches original ghostpack_gradio_f1.py
|
13 |
-
# Idle until triggered by API or Gradio
|
14 |
-
# Requires custom diffusers_helper package in /diffusers_helper
|
15 |
|
16 |
import os
|
17 |
import sys
|
18 |
-
import time
|
19 |
-
import json
|
20 |
-
import argparse
|
21 |
-
import importlib.util
|
22 |
import subprocess
|
23 |
-
import traceback
|
24 |
-
import torch
|
25 |
-
import einops
|
26 |
-
import numpy as np
|
27 |
-
from PIL import Image
|
28 |
-
import io
|
29 |
-
import gradio as gr
|
30 |
-
import asyncio
|
31 |
-
import queue
|
32 |
-
from threading import Thread
|
33 |
-
import re
|
34 |
import logging
|
35 |
-
import base64
|
36 |
-
import socket
|
37 |
-
import requests
|
38 |
-
import shutil
|
39 |
-
import uuid
|
40 |
-
from fastapi import FastAPI, HTTPException, UploadFile, File, Form, Depends, Security, status
|
41 |
-
from fastapi.security import APIKeyHeader
|
42 |
-
from fastapi.middleware.cors import CORSMiddleware
|
43 |
-
from fastapi.responses import JSONResponse
|
44 |
-
from pydantic import BaseModel
|
45 |
-
from diffusers import AutoencoderKLHunyuanVideo
|
46 |
-
from transformers import (
|
47 |
-
LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer,
|
48 |
-
SiglipImageProcessor, SiglipVisionModel
|
49 |
-
)
|
50 |
-
from diffusers_helper.hunyuan import (
|
51 |
-
encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
|
52 |
-
)
|
53 |
-
from diffusers_helper.utils import (
|
54 |
-
save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw
|
55 |
-
)
|
56 |
-
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
|
57 |
-
from diffusers_helper.memory import (
|
58 |
-
gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation,
|
59 |
-
offload_model_from_device_for_memory_preservation, fake_diffusers_current_device,
|
60 |
-
DynamicSwapInstaller, unload_complete_models, load_model_as_complete
|
61 |
-
)
|
62 |
-
from diffusers_helper.clip_vision import hf_clip_vision_encode
|
63 |
-
from diffusers_helper.bucket_tools import find_nearest_bucket
|
64 |
-
from diffusers_helper.thread_utils import AsyncStream
|
65 |
-
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
|
66 |
-
|
67 |
-
# Optional: Colorama for colored console output
|
68 |
-
try:
|
69 |
-
from colorama import init, Fore, Style
|
70 |
-
init(autoreset=True)
|
71 |
-
COLORAMA_AVAILABLE = True
|
72 |
-
def red(s): return Fore.RED + s + Style.RESET_ALL
|
73 |
-
def green(s): return Fore.GREEN + s + Style.RESET_ALL
|
74 |
-
def yellow(s): return Fore.YELLOW + s + Style.RESET_ALL
|
75 |
-
def reset_all(s): return Style.RESET_ALL + s
|
76 |
-
except ImportError:
|
77 |
-
COLORAMA_AVAILABLE = False
|
78 |
-
def red(s): return s
|
79 |
-
def green(s): return s
|
80 |
-
def yellow(s): return s
|
81 |
-
def reset_all(s): return s
|
82 |
|
83 |
# Set up logging
|
84 |
logging.basicConfig(
|
85 |
-
filename="/data/
|
86 |
level=logging.DEBUG,
|
87 |
format="%(asctime)s %(levelname)s:%(message)s",
|
88 |
)
|
89 |
logger = logging.getLogger(__name__)
|
90 |
-
logger.info("Starting GhostPack F1 Pro")
|
91 |
-
print(f"{green('Using /data/video_info.json for metadata')}")
|
92 |
-
|
93 |
-
VERSION = "1.2.8"
|
94 |
-
HF_TOKEN = os.getenv('HF_TOKEN', 'your-hf-token') # Set in Spaces secrets
|
95 |
-
API_KEY_NAME = "X-API-Key"
|
96 |
-
API_KEY = os.getenv('API_KEY', 'key_temp_1234567890') # Set in Spaces secrets
|
97 |
-
api_key_header = APIKeyHeader(name=API_KEY_NAME, auto_error=False)
|
98 |
|
99 |
-
#
|
100 |
-
|
101 |
-
|
|
|
102 |
|
103 |
-
#
|
104 |
-
|
105 |
-
parser.add_argument("--share", action="store_true", help="Share Gradio UI publicly")
|
106 |
-
parser.add_argument("--server", type=str, default="0.0.0.0", help="Server host")
|
107 |
-
parser.add_argument("--port", type=int, default=7860, help="FastAPI port")
|
108 |
-
parser.add_argument("--gradio", action="store_true", help="Enable Gradio UI")
|
109 |
-
parser.add_argument("--inbrowser", action="store_true", help="Open in browser")
|
110 |
-
parser.add_argument("--cli", action="store_true", help="Show CLI help")
|
111 |
-
args = parser.parse_args()
|
112 |
-
|
113 |
-
# Global state
|
114 |
-
render_on_off = True
|
115 |
-
|
116 |
-
BASE = os.path.abspath(os.path.dirname(__file__))
|
117 |
-
MODEL_DIR = "/data/models"
|
118 |
-
|
119 |
-
# Check if ports are available
|
120 |
-
def is_port_in_use(port):
|
121 |
-
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
122 |
-
return s.connect_ex(('0.0.0.0', port)) == 0
|
123 |
-
|
124 |
-
if args.cli:
|
125 |
-
print(f"{green('👻 GhostPack F1 Pro CLI')}")
|
126 |
-
print("python app.py # Launch API")
|
127 |
-
print("python app.py --gradio # Launch API + Gradio UI")
|
128 |
-
print("python app.py --cli # Show help")
|
129 |
-
sys.exit(0)
|
130 |
-
|
131 |
-
# Paths
|
132 |
-
DATA_DIR = "/data"
|
133 |
-
TMP_DIR = "/tmp/ghostpack"
|
134 |
-
VIDEO_OUTPUT_DIR = "/tmp/ghostpack/vid"
|
135 |
-
VIDEO_IMG_DIR = "/tmp/ghostpack/img"
|
136 |
-
VIDEO_TMP_DIR = "/tmp/ghostpack/tmp_vid"
|
137 |
-
VIDEO_INFO_FILE = "/data/video_info.json"
|
138 |
-
PROMPT_LOG_FILE = "/data/prompts.txt"
|
139 |
-
SAVED_PROMPTS_FILE = "/data/saved_prompts.json"
|
140 |
-
INSTALL_LOG_FILE = "/data/install_logs.txt"
|
141 |
-
LAST_CLEANUP_FILE = "/data/last_cleanup.txt"
|
142 |
-
|
143 |
-
# Initialize directories
|
144 |
-
for d in (DATA_DIR, TMP_DIR, VIDEO_OUTPUT_DIR, VIDEO_IMG_DIR, VIDEO_TMP_DIR, MODEL_DIR):
|
145 |
-
if not os.path.exists(d):
|
146 |
-
try:
|
147 |
-
os.makedirs(d, exist_ok=True)
|
148 |
-
os.chmod(d, 0o775)
|
149 |
-
logger.debug(f"Created {d}")
|
150 |
-
except Exception as e:
|
151 |
-
logger.error(f"Failed to create {d}: {e}")
|
152 |
-
print(f"{red(f'Error: Failed to create {d}: {e}')}")
|
153 |
-
sys.exit(1)
|
154 |
-
|
155 |
-
# Initialize files
|
156 |
-
for f in (VIDEO_INFO_FILE, SAVED_PROMPTS_FILE, PROMPT_LOG_FILE, INSTALL_LOG_FILE, LAST_CLEANUP_FILE):
|
157 |
-
if not os.path.exists(f):
|
158 |
-
try:
|
159 |
-
if f == LAST_CLEANUP_FILE:
|
160 |
-
with open(f, "w") as fd:
|
161 |
-
fd.write(str(time.time()))
|
162 |
-
elif f in (VIDEO_INFO_FILE, SAVED_PROMPTS_FILE):
|
163 |
-
with open(f, "w") as fd:
|
164 |
-
json.dump([], fd)
|
165 |
-
else:
|
166 |
-
open(f, "w").close()
|
167 |
-
os.chmod(f, 0o664)
|
168 |
-
logger.debug(f"Created {f}")
|
169 |
-
except Exception as e:
|
170 |
-
logger.error(f"Failed to create/chmod {f}: {e}")
|
171 |
-
print(f"{red(f'Error: Failed to create/chmod {f}: {e}')}")
|
172 |
-
sys.exit(1)
|
173 |
-
|
174 |
-
# Clear VIDEO_INFO_FILE on startup
|
175 |
-
try:
|
176 |
-
with open(VIDEO_INFO_FILE, "w") as f:
|
177 |
-
json.dump([], f)
|
178 |
-
os.chmod(VIDEO_INFO_FILE, 0o664)
|
179 |
-
logger.debug(f"Cleared {VIDEO_INFO_FILE}")
|
180 |
-
except Exception as e:
|
181 |
-
logger.error(f"Failed to clear {VIDEO_INFO_FILE}: {e}")
|
182 |
-
print(f"{red(f'Error: Failed to clear {VIDEO_INFO_FILE}: {e}')}")
|
183 |
-
sys.exit(1)
|
184 |
-
|
185 |
-
# Queue clearing utility
|
186 |
-
def clear_queue(q):
|
187 |
-
try:
|
188 |
-
while True:
|
189 |
-
if hasattr(q, "get_nowait"):
|
190 |
-
q.get_nowait()
|
191 |
-
else:
|
192 |
-
break
|
193 |
-
except queue.Empty:
|
194 |
-
pass
|
195 |
-
|
196 |
-
# Prompt utilities
|
197 |
-
def get_last_prompts():
|
198 |
try:
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
return []
|
204 |
-
|
205 |
-
def save_prompt_fn(prompt, n_p):
|
206 |
-
if not prompt:
|
207 |
-
return f"{red('❌ No prompt')}"
|
208 |
-
try:
|
209 |
-
data = json.load(open(SAVED_PROMPTS_FILE))
|
210 |
-
entry = {"prompt": prompt, "negative": n_p}
|
211 |
-
if entry not in data:
|
212 |
-
data.append(entry)
|
213 |
-
with open(SAVED_PROMPTS_FILE, "w") as f:
|
214 |
-
json.dump(data, f, indent=2)
|
215 |
-
os.chmod(SAVED_PROMPTS_FILE, 0o664)
|
216 |
-
return f"{green('✅ Saved')}"
|
217 |
-
except Exception as e:
|
218 |
-
logger.error(f"Failed to save prompt to {SAVED_PROMPTS_FILE}: {e}")
|
219 |
-
print(f"{red(f'Error: Failed to save prompt: {e}')}")
|
220 |
-
return f"{red('❌ Save failed')}"
|
221 |
-
|
222 |
-
def load_prompt_fn(idx):
|
223 |
-
lst = get_last_prompts()
|
224 |
-
return lst[idx]["prompt"] if idx < len(lst) else ""
|
225 |
-
|
226 |
-
# Cleanup utilities
|
227 |
-
def clear_temp_videos():
|
228 |
-
try:
|
229 |
-
for f in os.listdir(VIDEO_TMP_DIR):
|
230 |
-
os.remove(os.path.join(VIDEO_TMP_DIR, f))
|
231 |
-
return f"{green('✅ Temp cleared')}"
|
232 |
-
except Exception as e:
|
233 |
-
logger.error(f"Failed to clear temp videos in {VIDEO_TMP_DIR}: {e}")
|
234 |
-
print(f"{red(f'Error: Failed to clear temp videos: {e}')}")
|
235 |
-
return f"{red('❌ Clear failed')}"
|
236 |
-
|
237 |
-
def clear_old_files():
|
238 |
-
cutoff = time.time() - 7 * 24 * 3600
|
239 |
-
c = 0
|
240 |
-
try:
|
241 |
-
for d in (VIDEO_TMP_DIR, VIDEO_IMG_DIR, VIDEO_OUTPUT_DIR):
|
242 |
-
for f in os.listdir(d):
|
243 |
-
p = os.path.join(d, f)
|
244 |
-
if os.path.isfile(p) and os.path.getmtime(p) < cutoff:
|
245 |
-
os.remove(p)
|
246 |
-
c += 1
|
247 |
-
with open(LAST_CLEANUP_FILE, "w") as f:
|
248 |
-
f.write(str(time.time()))
|
249 |
-
os.chmod(LAST_CLEANUP_FILE, 0o664)
|
250 |
-
return f"{green(f'✅ {c} old files removed')}"
|
251 |
-
except Exception as e:
|
252 |
-
logger.error(f"Failed to clear old files: {e}")
|
253 |
-
print(f"{red(f'Error: Failed to clear old files: {e}')}")
|
254 |
-
return f"{red('❌ Clear failed')}"
|
255 |
-
|
256 |
-
def clear_images():
|
257 |
-
try:
|
258 |
-
for f in os.listdir(VIDEO_IMG_DIR):
|
259 |
-
os.remove(os.path.join(VIDEO_IMG_DIR, f))
|
260 |
-
return f"{green('✅ Images cleared')}"
|
261 |
-
except Exception as e:
|
262 |
-
logger.error(f"Failed to clear images in {VIDEO_IMG_DIR}: {e}")
|
263 |
-
print(f"{red(f'Error: Failed to clear images: {e}')}")
|
264 |
-
return f"{red('❌ Clear failed')}"
|
265 |
-
|
266 |
-
def clear_videos():
|
267 |
-
try:
|
268 |
-
for f in os.listdir(VIDEO_OUTPUT_DIR):
|
269 |
-
os.remove(os.path.join(VIDEO_OUTPUT_DIR, f))
|
270 |
-
return f"{green('✅ Videos cleared')}"
|
271 |
-
except Exception as e:
|
272 |
-
logger.error(f"Failed to clear videos in {VIDEO_OUTPUT_DIR}: {e}")
|
273 |
-
print(f"{red(f'Error: Failed to clear videos: {e}')}")
|
274 |
-
return f"{red('❌ Clear failed')}"
|
275 |
-
|
276 |
-
def check_and_run_weekly_cleanup():
|
277 |
-
try:
|
278 |
-
with open(LAST_CLEANUP_FILE, "r") as f:
|
279 |
-
last_cleanup = float(f.read().strip())
|
280 |
-
except (FileNotFoundError, ValueError):
|
281 |
-
last_cleanup = 0
|
282 |
-
if time.time() - last_cleanup > 7 * 24 * 3600:
|
283 |
-
return clear_old_files()
|
284 |
-
return ""
|
285 |
-
|
286 |
-
# Video metadata utilities
|
287 |
-
def save_video_info(prompt, n_p, filename, seed, secs, additional_info, completed=False):
|
288 |
-
if not completed:
|
289 |
-
return
|
290 |
-
try:
|
291 |
-
video_info = json.load(open(VIDEO_INFO_FILE))
|
292 |
-
except (FileNotFoundError, json.JSONDecodeError):
|
293 |
-
video_info = []
|
294 |
-
entry = {
|
295 |
-
"prompt": prompt or "",
|
296 |
-
"negative_prompt": n_p or "",
|
297 |
-
"filename": filename,
|
298 |
-
"location": os.path.join(VIDEO_OUTPUT_DIR, filename),
|
299 |
-
"seed": seed,
|
300 |
-
"duration_secs": secs,
|
301 |
-
"timestamp": time.strftime("%Y%m%d_%H%M%S"),
|
302 |
-
"completed": completed,
|
303 |
-
"additional_info": additional_info or {},
|
304 |
-
}
|
305 |
-
video_info.append(entry)
|
306 |
-
try:
|
307 |
-
with open(VIDEO_INFO_FILE, "w") as f:
|
308 |
-
json.dump(video_info, f, indent=2)
|
309 |
-
os.chmod(VIDEO_INFO_FILE, 0o664)
|
310 |
-
logger.debug(f"Saved video info to {VIDEO_INFO_FILE}")
|
311 |
-
except Exception as e:
|
312 |
-
logger.error(f"Failed to save video info to {VIDEO_INFO_FILE}: {e}")
|
313 |
-
print(f"{red(f'Error: Failed to save video info to {VIDEO_INFO_FILE}: {e}')}")
|
314 |
-
raise
|
315 |
-
|
316 |
-
# Gallery helpers
|
317 |
-
def list_images():
|
318 |
-
return sorted(
|
319 |
-
[os.path.join(VIDEO_IMG_DIR, f) for f in os.listdir(VIDEO_IMG_DIR) if f.lower().endswith((".png", ".jpg"))],
|
320 |
-
key=os.path.getmtime,
|
321 |
-
)
|
322 |
-
|
323 |
-
def list_videos():
|
324 |
-
return sorted(
|
325 |
-
[os.path.join(VIDEO_OUTPUT_DIR, f) for f in os.listdir(VIDEO_OUTPUT_DIR) if f.lower().endswith(".mp4")],
|
326 |
-
key=os.path.getmtime,
|
327 |
-
)
|
328 |
-
|
329 |
-
def load_image(sel):
|
330 |
-
imgs = list_images()
|
331 |
-
if sel in [os.path.basename(p) for p in imgs]:
|
332 |
-
pth = imgs[[os.path.basename(p) for p in imgs].index(sel)]
|
333 |
-
return gr.update(value=pth), gr.update(value=os.path.basename(pth))
|
334 |
-
return gr.update(), gr.update()
|
335 |
-
|
336 |
-
def load_video(sel):
|
337 |
-
vids = list_videos()
|
338 |
-
if sel in [os.path.basename(p) for p in vids]:
|
339 |
-
pth = vids[[os.path.basename(p) for p in vids].index(sel)]
|
340 |
-
return gr.update(value=pth), gr.update(value=os.path.basename(pth))
|
341 |
-
return gr.update(), gr.update()
|
342 |
-
|
343 |
-
def next_image_and_load(sel):
|
344 |
-
imgs = list_images()
|
345 |
-
if not imgs:
|
346 |
-
return gr.update(), gr.update()
|
347 |
-
names = [os.path.basename(i) for i in imgs]
|
348 |
-
idx = (names.index(sel) + 1) % len(names) if sel in names else 0
|
349 |
-
pth = imgs[idx]
|
350 |
-
return gr.update(value=pth), gr.update(value=os.path.basename(pth))
|
351 |
-
|
352 |
-
def next_video_and_load(sel):
|
353 |
-
vids = list_videos()
|
354 |
-
if not vids:
|
355 |
-
return gr.update(), gr.update()
|
356 |
-
names = [os.path.basename(v) for v in vids]
|
357 |
-
idx = (names.index(sel) + 1) % len(names) if sel in names else 0
|
358 |
-
pth = vids[idx]
|
359 |
-
return gr.update(value=pth), gr.update(value=os.path.basename(pth))
|
360 |
-
|
361 |
-
def gallery_image_select(evt: gr.SelectData):
|
362 |
-
imgs = list_images()
|
363 |
-
if evt.index is not None and evt.index < len(imgs):
|
364 |
-
pth = imgs[evt.index]
|
365 |
-
return gr.update(value=pth), gr.update(value=os.path.basename(pth))
|
366 |
-
return gr.update(), gr.update()
|
367 |
-
|
368 |
-
def gallery_video_select(evt: gr.SelectData):
|
369 |
-
vids = list_videos()
|
370 |
-
if evt.index is not None and evt.index < len(vids):
|
371 |
-
pth = vids[evt.index]
|
372 |
-
return gr.update(value=pth), gr.update(value=os.path.basename(pth))
|
373 |
-
return gr.update(), gr.update()
|
374 |
-
|
375 |
-
# Install status
|
376 |
-
def check_mod(n):
|
377 |
-
return importlib.util.find_spec(n) is not None
|
378 |
-
|
379 |
-
def status_xformers():
|
380 |
-
print(f"{green('✅ Xformers is installed!')}" if check_mod("xformers") else f"{red('❌ Xformers is not installed!')}")
|
381 |
-
return f"{green('✅ xformers')}" if check_mod("xformers") else f"{red('❌ xformers')}"
|
382 |
-
|
383 |
-
def status_sage():
|
384 |
-
print(f"{green('✅ Sage Attn is installed!')}" if check_mod("sageattention") else f"{red('❌ Sage Attn is not installed!')}")
|
385 |
-
return f"{green('✅ sage-attn')}" if check_mod("sageattention") else f"{red('❌ sage-attn')}"
|
386 |
-
|
387 |
-
def status_flash():
|
388 |
-
print(f"{yellow('⚠️ Flash Attn is not installed, performance may be reduced!')}" if not check_mod("flash_attn") else f"{green('✅ Flash Attn is installed!')}")
|
389 |
-
return f"{yellow('⚠️ flash-attn')}" if not check_mod("flash_attn") else f"{green('✅ flash-attn')}"
|
390 |
-
|
391 |
-
def status_colorama():
|
392 |
-
return f"{green('✅ colorama')}" if COLORAMA_AVAILABLE else f"{red('❌ colorama')}"
|
393 |
-
|
394 |
-
def install_pkg(pkg, warn=None):
|
395 |
-
if warn:
|
396 |
-
print(f"{yellow(warn)}")
|
397 |
-
time.sleep(1)
|
398 |
-
try:
|
399 |
-
out = subprocess.check_output(
|
400 |
-
[sys.executable, "-m", "pip", "install", pkg], stderr=subprocess.STDOUT, text=True
|
401 |
-
)
|
402 |
-
res = f"{green(f'✅ {pkg}')}\n{out}\n"
|
403 |
except subprocess.CalledProcessError as e:
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
return res
|
408 |
-
|
409 |
-
install_xformers = lambda: install_pkg("xformers")
|
410 |
-
install_sage_attn = lambda: install_pkg("sage-attn")
|
411 |
-
install_flash_attn = lambda: install_pkg("flash-attn", "⚠️ long compile, optional for performance")
|
412 |
-
install_colorama = lambda: install_pkg("colorama")
|
413 |
-
refresh_logs = lambda: open(INSTALL_LOG_FILE).read()
|
414 |
-
clear_logs = lambda: open(INSTALL_LOG_FILE, "w").close() or f"{green('✅ Logs cleared')}"
|
415 |
-
|
416 |
-
# Model load
|
417 |
-
free_mem = get_cuda_free_memory_gb(gpu)
|
418 |
-
hv = free_mem > 60
|
419 |
-
logger.info(f"VRAM available: {free_mem:.2f} GB, High VRAM mode: {hv}")
|
420 |
-
print(f"{yellow(f'VRAM available: {free_mem:.2f} GB, High VRAM mode: {hv}')}")
|
421 |
-
|
422 |
-
try:
|
423 |
-
print(f"{yellow('Loading models from /data/models...')}")
|
424 |
-
text_encoder = LlamaModel.from_pretrained(
|
425 |
-
os.path.join(MODEL_DIR, "hunyuanvideo-community/HunyuanVideo/text_encoder"), torch_dtype=torch.float16
|
426 |
-
).cpu().eval()
|
427 |
-
text_encoder_2 = CLIPTextModel.from_pretrained(
|
428 |
-
os.path.join(MODEL_DIR, "hunyuanvideo-community/HunyuanVideo/text_encoder_2"), torch_dtype=torch.float16
|
429 |
-
).cpu().eval()
|
430 |
-
tokenizer = LlamaTokenizerFast.from_pretrained(
|
431 |
-
os.path.join(MODEL_DIR, "hunyuanvideo-community/HunyuanVideo/tokenizer")
|
432 |
-
)
|
433 |
-
tokenizer_2 = CLIPTokenizer.from_pretrained(
|
434 |
-
os.path.join(MODEL_DIR, "hunyuanvideo-community/HunyuanVideo/tokenizer_2")
|
435 |
-
)
|
436 |
-
vae = AutoencoderKLHunyuanVideo.from_pretrained(
|
437 |
-
os.path.join(MODEL_DIR, "hunyuanvideo-community/HunyuanVideo/vae"), torch_dtype=torch.float16
|
438 |
-
).cpu().eval()
|
439 |
-
feature_extractor = SiglipImageProcessor.from_pretrained(
|
440 |
-
os.path.join(MODEL_DIR, "lllyasviel/flux_redux_bfl/feature_extractor")
|
441 |
-
)
|
442 |
-
image_encoder = SiglipVisionModel.from_pretrained(
|
443 |
-
os.path.join(MODEL_DIR, "lllyasviel/flux_redux_bfl/image_encoder"), torch_dtype=torch.float16
|
444 |
-
).cpu().eval()
|
445 |
-
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained(
|
446 |
-
os.path.join(MODEL_DIR, "lllyasviel/FramePack_F1_I2V_HY_20250503"), torch_dtype=torch.bfloat16
|
447 |
-
).cpu().eval()
|
448 |
-
logger.info("Models loaded successfully from /data/models")
|
449 |
-
print(f"{green('Models loaded successfully from /data/models')}")
|
450 |
-
except Exception as e:
|
451 |
-
logger.error(f"Failed to load models: {e}", exc_info=True)
|
452 |
-
print(f"{red(f'Error: Failed to load models from /data/models: {e}')}")
|
453 |
-
raise
|
454 |
-
|
455 |
-
if not hv:
|
456 |
-
vae.enable_slicing()
|
457 |
-
vae.enable_tiling()
|
458 |
-
|
459 |
-
transformer.high_quality_fp32_output_for_inference = True
|
460 |
-
transformer.to(dtype=torch.bfloat16)
|
461 |
-
for m in (vae, image_encoder, text_encoder, text_encoder_2):
|
462 |
-
m.to(dtype=torch.float16)
|
463 |
-
for m in (vae, image_encoder, text_encoder, text_encoder_2, transformer):
|
464 |
-
m.requires_grad_(False)
|
465 |
-
|
466 |
-
if not hv:
|
467 |
-
DynamicSwapInstaller.install_model(transformer, device=gpu)
|
468 |
-
DynamicSwapInstaller.install_model(text_encoder, device=gpu)
|
469 |
-
else:
|
470 |
-
for m in (vae, image_encoder, text_encoder, text_encoder_2, transformer):
|
471 |
-
m.to(gpu)
|
472 |
-
logger.debug("Models configured and moved to device")
|
473 |
-
print(f"{green('Models configured and moved to device')}")
|
474 |
|
475 |
-
#
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
allow_credentials=True,
|
481 |
-
allow_methods=["*"],
|
482 |
-
allow_headers=["*"],
|
483 |
)
|
484 |
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
return api_key
|
492 |
-
|
493 |
-
class GenerateRequest(BaseModel):
|
494 |
-
prompt: str
|
495 |
-
negative_prompt: str
|
496 |
-
seed: int
|
497 |
-
video_length: float
|
498 |
-
latent_window: int
|
499 |
-
steps: int
|
500 |
-
cfg: float
|
501 |
-
distilled_cfg: float
|
502 |
-
cfg_rescale: float
|
503 |
-
gpu_keep: float
|
504 |
-
crf: int
|
505 |
-
use_teacache: bool
|
506 |
-
camera_action: str
|
507 |
-
disable_prompt_mods: bool
|
508 |
-
link_steps_window: bool
|
509 |
-
|
510 |
-
@app.get("/health")
|
511 |
-
async def health_check():
|
512 |
-
try:
|
513 |
-
return JSONResponse(content={"status": "healthy"})
|
514 |
-
except Exception as e:
|
515 |
-
logger.error(f"Health check failed: {e}", exc_info=True)
|
516 |
-
return JSONResponse(content={"error": str(e), "status": "error"}, status_code=500)
|
517 |
-
|
518 |
-
@app.get("/test")
|
519 |
-
async def test_server():
|
520 |
-
try:
|
521 |
-
report = {
|
522 |
-
"server_status": {
|
523 |
-
"version": VERSION,
|
524 |
-
"host": args.server,
|
525 |
-
"port": args.port,
|
526 |
-
"uptime": time.time() - time.time() if job_status else 0,
|
527 |
-
"active_jobs": len(active_jobs),
|
528 |
-
"api_status": "running",
|
529 |
-
},
|
530 |
-
"system": {
|
531 |
-
"vram_total": free_mem,
|
532 |
-
"vram_free": get_cuda_free_memory_gb(gpu),
|
533 |
-
"high_vram_mode": hv,
|
534 |
-
"cuda_available": torch.cuda.is_available(),
|
535 |
-
"cuda_device": torch.cuda.get_device_name(gpu) if torch.cuda.is_available() else "N/A",
|
536 |
-
},
|
537 |
-
"models": {
|
538 |
-
"text_encoder": text_encoder is not None,
|
539 |
-
"text_encoder_2": text_encoder_2 is not None,
|
540 |
-
"vae": vae is not None,
|
541 |
-
"image_encoder": image_encoder is not None,
|
542 |
-
"transformer": transformer is not None,
|
543 |
-
"tokenizer": tokenizer is not None,
|
544 |
-
"tokenizer_2": tokenizer_2 is not None,
|
545 |
-
"feature_extractor": feature_extractor is not None,
|
546 |
-
},
|
547 |
-
"paths": {
|
548 |
-
"base": BASE,
|
549 |
-
"models": MODEL_DIR,
|
550 |
-
"images": VIDEO_IMG_DIR,
|
551 |
-
"videos": VIDEO_OUTPUT_DIR,
|
552 |
-
"temp": VIDEO_TMP_DIR,
|
553 |
-
"data": DATA_DIR,
|
554 |
-
"prompt_log": PROMPT_LOG_FILE,
|
555 |
-
"saved_prompts": SAVED_PROMPTS_FILE,
|
556 |
-
"install_log": INSTALL_LOG_FILE,
|
557 |
-
"video_info": VIDEO_INFO_FILE,
|
558 |
-
},
|
559 |
-
"file_system": {
|
560 |
-
"images_writable": os.access(VIDEO_IMG_DIR, os.W_OK),
|
561 |
-
"videos_writable": os.access(VIDEO_OUTPUT_DIR, os.W_OK),
|
562 |
-
"temp_writable": os.access(VIDEO_TMP_DIR, os.W_OK),
|
563 |
-
"data_writable": os.access(DATA_DIR, os.W_OK),
|
564 |
-
"models_writable": os.access(MODEL_DIR, os.W_OK),
|
565 |
-
},
|
566 |
-
"dependencies": {
|
567 |
-
"xformers": status_xformers(),
|
568 |
-
"sage_attn": status_sage(),
|
569 |
-
"flash_attn": status_flash(),
|
570 |
-
"colorama": status_colorama(),
|
571 |
-
},
|
572 |
-
"health_check": {"status": "pass", "details": ""}
|
573 |
-
}
|
574 |
-
|
575 |
-
try:
|
576 |
-
dummy_img = np.zeros((64, 64, 3), dtype=np.uint8)
|
577 |
-
img_pt = (torch.from_numpy(dummy_img).float() / 127.5 - 1).permute(2, 0, 1)[None, :, None]
|
578 |
-
if not hv:
|
579 |
-
load_model_as_complete(vae, gpu)
|
580 |
-
_ = vae_encode(img_pt, vae)
|
581 |
-
report["health_check"]["status"] = "pass"
|
582 |
-
except Exception as e:
|
583 |
-
report["health_check"]["status"] = "fail"
|
584 |
-
report["health_check"]["details"] = str(e)
|
585 |
-
logger.error(f"Health check failed: {e}", exc_info=True)
|
586 |
-
|
587 |
-
logger.info("Test endpoint accessed successfully")
|
588 |
-
print(f"{green(f'Test endpoint accessed: API running on {args.server}:{args.port}')}")
|
589 |
-
return JSONResponse(content=report)
|
590 |
-
except Exception as e:
|
591 |
-
logger.error(f"Test endpoint error: {e}", exc_info=True)
|
592 |
-
print(f"{red(f'Test endpoint error: {e}')}")
|
593 |
-
return JSONResponse(
|
594 |
-
content={"error": str(e), "status": "fail"},
|
595 |
-
status_code=500
|
596 |
-
)
|
597 |
-
|
598 |
-
@app.get("/status/{job_id}")
|
599 |
-
async def get_status(job_id: str, api_key: str = Depends(verify_api_key)):
|
600 |
-
try:
|
601 |
-
status = job_status.get(job_id, {"status": "not_found", "progress": 0.0, "render_time": 0})
|
602 |
-
return JSONResponse(
|
603 |
-
content={
|
604 |
-
"job_id": job_id,
|
605 |
-
"render_status": status["status"],
|
606 |
-
"render_progress": status["progress"],
|
607 |
-
"render_time": status["render_time"],
|
608 |
-
"active_jobs": len(active_jobs),
|
609 |
-
"api_status": "running",
|
610 |
-
}
|
611 |
-
)
|
612 |
-
except Exception as e:
|
613 |
-
logger.error(f"Status check failed for job {job_id}: {e}", exc_info=True)
|
614 |
-
return JSONResponse(
|
615 |
-
content={"error": str(e), "job_id": job_id, "status": "error"},
|
616 |
-
status_code=500
|
617 |
-
)
|
618 |
-
|
619 |
-
@app.post("/stop/{job_id}")
|
620 |
-
async def stop_render(job_id: str, api_key: str = Depends(verify_api_key)):
|
621 |
-
if job_id not in active_jobs:
|
622 |
-
logger.info(f"No active job {job_id} to stop")
|
623 |
-
print(f"{yellow(f'No active job {job_id} to stop')}")
|
624 |
-
return JSONResponse(content={"message": f"No active job {job_id}"})
|
625 |
-
stream = active_jobs[jid]
|
626 |
-
stream.stop()
|
627 |
-
active_jobs.pop(job_id, None)
|
628 |
-
job_status[job_id]["status"] = "stopped"
|
629 |
-
job_status[job_id]["progress"] = 0.0
|
630 |
-
logger.info(f"Stopped job {job_id}")
|
631 |
-
print(f"{yellow(f'Stopped job {job_id}')}")
|
632 |
-
return JSONResponse(content={"message": f"Job {job_id} stopped"})
|
633 |
-
|
634 |
-
@app.get("/videos")
|
635 |
-
async def get_videos(api_key: str = Depends(verify_api_key)):
|
636 |
-
try:
|
637 |
-
videos = [f for f in os.listdir(VIDEO_OUTPUT_DIR) if f.lower().endswith(".mp4")]
|
638 |
-
return JSONResponse(content={"status": "success", "videos": videos})
|
639 |
-
except Exception as e:
|
640 |
-
logger.error(f"Failed to list videos: {e}", exc_info=True)
|
641 |
-
return JSONResponse(content={"error": str(e), "status": "error"}, status_code=500)
|
642 |
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
"prompt": prompt,
|
665 |
-
"negative_prompt": negative_prompt,
|
666 |
-
"seed": seed,
|
667 |
-
"video_length": video_length,
|
668 |
-
"latent_window": latent_window,
|
669 |
-
"steps": steps,
|
670 |
-
"cfg": cfg,
|
671 |
-
"distilled_cfg": distilled_cfg,
|
672 |
-
"cfg_rescale": cfg_rescale,
|
673 |
-
"gpu_keep": gpu_keep,
|
674 |
-
"crf": crf,
|
675 |
-
"use_teacache": use_teacache,
|
676 |
-
"camera_action": camera_action,
|
677 |
-
"disable_prompt_mods": disable_prompt_mods,
|
678 |
-
"link_steps_window": link_steps_window
|
679 |
-
}
|
680 |
-
logger.info(f"Received /generate request with parameters: {json.dumps(params, indent=2)}")
|
681 |
-
print(f"{green(f'API: Received /generate request with parameters: {json.dumps(params, indent=2)}')}")
|
682 |
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
687 |
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
|
|
|
696 |
try:
|
697 |
-
logger.
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
try:
|
706 |
-
img = Image.open(io.BytesIO(img_data)).convert('RGB')
|
707 |
-
img_np = np.array(img)
|
708 |
-
if img_np.shape[0] < 64 or img_np.shape[1] < 64:
|
709 |
-
logger.error("Image dimensions too small")
|
710 |
-
print(f"{red('API: Image dimensions too small (minimum 64x64)')}")
|
711 |
-
raise HTTPException(status_code=400, detail="Image dimensions must be at least 64x64")
|
712 |
-
except Exception as e:
|
713 |
-
logger.error(f"Invalid image: {str(e)}")
|
714 |
-
print(f"{red(f'API: Invalid image: {str(e)}')}")
|
715 |
-
raise HTTPException(status_code=400, detail=f"Invalid image: {str(e)}")
|
716 |
-
|
717 |
-
if get_cuda_free_memory_gb(gpu) < 2:
|
718 |
-
logger.error("Insufficient VRAM for processing")
|
719 |
-
print(f"{red('API: Insufficient VRAM (<2GB). Lower gpu_keep or latent_window.')}")
|
720 |
-
raise HTTPException(status_code=500, detail="Low VRAM (<2GB). Lower 'gpu_keep' or 'latent_window'.")
|
721 |
-
|
722 |
-
logger.info(f"Passing to worker: seed={seed}, video_length={video_length}, latent_window={latent_window}, steps={steps}, cfg={cfg}, distilled_cfg={distilled_cfg}")
|
723 |
-
print(f"{yellow(f'API: Passing to worker: seed={seed}, video_length={video_length}, latent_window={latent_window}, steps={steps}, cfg={cfg}, distilled_cfg={distilled_cfg}')}")
|
724 |
-
|
725 |
-
final_video_path = worker(
|
726 |
-
img_np=img_np,
|
727 |
-
prompt=prompt,
|
728 |
-
negative_prompt=negative_prompt,
|
729 |
-
seed=seed,
|
730 |
-
secs=video_length,
|
731 |
-
win=latent_window,
|
732 |
-
stp=steps,
|
733 |
-
cfg=cfg,
|
734 |
-
gsc=distilled_cfg,
|
735 |
-
rsc=cfg_rescale,
|
736 |
-
keep=gpu_keep,
|
737 |
-
tea=use_teacache,
|
738 |
-
crf=crf,
|
739 |
-
camera_action=camera_action,
|
740 |
-
disable_prompt_mods=disable_prompt_mods,
|
741 |
-
link_steps_window=link_steps_window,
|
742 |
-
stream=stream,
|
743 |
-
jid=jid
|
744 |
)
|
745 |
-
|
746 |
-
if final_video_path is None:
|
747 |
-
logger.error("Render stopped or failed")
|
748 |
-
print(f"{red('API: Render stopped or failed')}")
|
749 |
-
raise HTTPException(status_code=500, detail="Render stopped or failed")
|
750 |
-
|
751 |
-
final_filename = os.path.basename(final_video_path)
|
752 |
-
with open(final_video_path, "rb") as f:
|
753 |
-
video_data = base64.b64encode(f.read()).decode("utf-8")
|
754 |
-
|
755 |
-
save_video_info(
|
756 |
-
prompt=prompt,
|
757 |
-
n_p=negative_prompt,
|
758 |
-
filename=final_filename,
|
759 |
-
seed=seed,
|
760 |
-
secs=video_length,
|
761 |
-
additional_info={"camera_action": camera_action, "job_id": jid},
|
762 |
-
completed=True
|
763 |
-
)
|
764 |
-
|
765 |
-
response_info = {
|
766 |
-
"status": "success",
|
767 |
-
"job_id": jid,
|
768 |
-
"video_data": video_data,
|
769 |
-
"metadata": {
|
770 |
-
"prompt": prompt,
|
771 |
-
"negative_prompt": negative_prompt,
|
772 |
-
"seed": seed,
|
773 |
-
"duration_secs": video_length,
|
774 |
-
"timestamp": time.strftime("%Y%m%d_%H%M%S"),
|
775 |
-
"render_time_secs": job_status[jid]["render_time"],
|
776 |
-
"camera_action": camera_action,
|
777 |
-
"latent_window": latent_window,
|
778 |
-
"steps": steps,
|
779 |
-
"cfg": cfg,
|
780 |
-
"distilled_cfg": distilled_cfg,
|
781 |
-
"cfg_rescale": cfg_rescale,
|
782 |
-
"gpu_keep": gpu_keep,
|
783 |
-
"crf": crf,
|
784 |
-
"use_teacache": use_teacache,
|
785 |
-
"disable_prompt_mods": disable_prompt_mods,
|
786 |
-
"link_steps_window": link_steps_window
|
787 |
-
}
|
788 |
-
}
|
789 |
-
|
790 |
-
logger.info(f"Video generated: {final_video_path}")
|
791 |
-
print(f"{green(f'API: Video generated: {final_video_path}')}")
|
792 |
-
return JSONResponse(content=response_info)
|
793 |
-
|
794 |
-
except Exception as e:
|
795 |
-
logger.error(f"Generate failed: {e}", exc_info=True)
|
796 |
-
print(f"{red(f'API: Error during /generate: {str(e)}')}")
|
797 |
-
job_status[jid]["status"] = "error"
|
798 |
-
job_status[jid]["progress"] = 0.0
|
799 |
-
stream.output_queue.push(("end", str(e)))
|
800 |
-
return JSONResponse(
|
801 |
-
content={"error": str(e), "job_id": jid, "status": "error"},
|
802 |
-
status_code=500
|
803 |
-
)
|
804 |
-
finally:
|
805 |
-
active_jobs.pop(jid, None)
|
806 |
-
clear_queue(stream.input_queue)
|
807 |
-
clear_queue(stream.output_queue)
|
808 |
-
if job_status.get(jid, {}).get("status") not in ["complete", "error", "stopped"]:
|
809 |
-
job_status[jid]["status"] = "complete"
|
810 |
-
torch.cuda.empty_cache()
|
811 |
-
|
812 |
-
@torch.no_grad()
|
813 |
-
def worker(img_np, prompt, negative_prompt, seed, secs, win, stp, cfg, gsc, rsc, keep, tea, crf, camera_action, disable_prompt_mods, link_steps_window, stream, jid):
|
814 |
-
start_time = time.time()
|
815 |
-
job_status[jid] = {"status": "rendering", "progress": 0.0, "render_time": 0}
|
816 |
-
max_sections = 100
|
817 |
-
|
818 |
-
logger.info(f"Worker started for job {jid} with secs={secs}, win={win}, cfg={cfg}, distilled_cfg={gsc}")
|
819 |
-
print(f"{green(f'API: Starting video generation, job ID: {jid}, secs={secs}, win={win}, cfg={cfg}, distilled_cfg={gsc}')}")
|
820 |
-
|
821 |
-
try:
|
822 |
-
if img_np.shape[0] < 64 or img_np.shape[1] < 64:
|
823 |
-
raise ValueError("Image dimensions too small (minimum 64x64)")
|
824 |
-
if secs > 10:
|
825 |
-
logger.warning("Video length > 10s capped at 10s")
|
826 |
-
print(f"{yellow('API: Video length > 10s capped at 10s')}")
|
827 |
-
secs = min(secs, 10)
|
828 |
-
if win > 10:
|
829 |
-
logger.warning("Latent window > 10 capped at 10")
|
830 |
-
print(f"{yellow('API: Latent window > 10 capped at 10')}")
|
831 |
-
win = min(win, 10)
|
832 |
-
if get_cuda_free_memory_gb(gpu) < 2:
|
833 |
-
raise ValueError("Low VRAM (<2GB). Lower 'gpu_keep' or 'latent_window'.")
|
834 |
-
|
835 |
-
try:
|
836 |
-
if hasattr(stream.input_queue, "qsize") and stream.input_queue.qsize() > 0:
|
837 |
-
if stream.input_queue.get_nowait() == "end":
|
838 |
-
stream.output_queue.push(("end", "Job stopped by client"))
|
839 |
-
job_status[jid]["status"] = "stopped"
|
840 |
-
return None
|
841 |
-
except queue.Empty:
|
842 |
-
pass
|
843 |
-
|
844 |
-
if not disable_prompt_mods:
|
845 |
-
if "stop" not in prompt.lower() and secs > 3:
|
846 |
-
prompt += " The subject stops moving after 3 seconds."
|
847 |
-
if "smooth" not in prompt.lower():
|
848 |
-
prompt = f"Smooth animation: {prompt}"
|
849 |
-
if "silent" not in prompt.lower():
|
850 |
-
prompt += ", silent"
|
851 |
-
prompt = update_prompt(prompt, camera_action)
|
852 |
-
if len(prompt.split()) > 50:
|
853 |
-
logger.warning("Complex prompt may slow rendering")
|
854 |
-
print(f"{yellow('API: Warning: Complex prompt may slow rendering')}")
|
855 |
-
|
856 |
-
try:
|
857 |
-
with open(PROMPT_LOG_FILE, "a") as f:
|
858 |
-
f.write(f"{jid}\t{prompt}\t{negative_prompt}\n")
|
859 |
-
os.chmod(PROMPT_LOG_FILE, 0o664)
|
860 |
-
except Exception as e:
|
861 |
-
logger.error(f"Failed to write to {PROMPT_LOG_FILE}: {e}")
|
862 |
-
print(f"{red(f'API: Failed to write prompt log: {e}')}")
|
863 |
-
raise
|
864 |
-
|
865 |
-
stream.output_queue.push(('progress', (None, "", make_progress_bar_html(0, "Start"))))
|
866 |
-
|
867 |
-
if not hv:
|
868 |
-
unload_complete_models(text_encoder, text_encoder_2, image_encoder, vae, transformer)
|
869 |
-
fake_diffusers_current_device(text_encoder, gpu)
|
870 |
-
load_model_as_complete(text_encoder_2, gpu)
|
871 |
-
lv, cp = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
872 |
-
if cfg == 1:
|
873 |
-
lv_n = torch.zeros_like(lv)
|
874 |
-
cp_n = torch.zeros_like(cp)
|
875 |
-
else:
|
876 |
-
lv_n, cp_n = encode_prompt_conds(negative_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
877 |
-
lv, m = crop_or_pad_yield_mask(lv, 512)
|
878 |
-
lv_n, m_n = crop_or_pad_yield_mask(lv_n, 512)
|
879 |
-
lv, cp, lv_n, cp_n = [x.to(torch.bfloat16) for x in (lv, cp, lv_n, cp_n)]
|
880 |
-
logger.debug(f"Prompt embeddings: lv={lv.shape}, cp={cp.shape}, lv_n={lv_n.shape}, cp_n={cp_n.shape}")
|
881 |
-
torch.cuda.empty_cache()
|
882 |
-
|
883 |
-
H, W, _ = img_np.shape
|
884 |
-
h, w = H, W
|
885 |
-
img_filename = f"{jid}.png"
|
886 |
-
try:
|
887 |
-
Image.fromarray(img_np).save(os.path.join(VIDEO_IMG_DIR, img_filename))
|
888 |
-
os.chmod(os.path.join(VIDEO_IMG_DIR, img_filename), 0o664)
|
889 |
-
except Exception as e:
|
890 |
-
logger.error(f"Failed to save image {img_filename}: {e}")
|
891 |
-
print(f"{red(f'API: Failed to save image: {e}')}")
|
892 |
-
raise
|
893 |
-
|
894 |
-
img_pt = (torch.from_numpy(img_np).float() / 127.5 - 1).permute(2, 0, 1)[None, :, None]
|
895 |
-
logger.debug(f"Image tensor shape: {img_pt.shape}")
|
896 |
-
|
897 |
-
if not hv:
|
898 |
-
load_model_as_complete(vae, gpu)
|
899 |
-
start_lat = vae_encode(img_pt, vae)
|
900 |
-
logger.debug(f"VAE encoded latent shape: {start_lat.shape}")
|
901 |
-
if not hv:
|
902 |
-
load_model_as_complete(image_encoder, gpu)
|
903 |
-
img_emb = hf_clip_vision_encode(img_np, feature_extractor, image_encoder).last_hidden_state.to(torch.bfloat16)
|
904 |
-
logger.debug(f"Image embedding shape: {img_emb.shape}")
|
905 |
-
torch.cuda.empty_cache()
|
906 |
-
|
907 |
-
gen = torch.Generator("cpu").manual_seed(seed)
|
908 |
-
sections = max(round((secs * 30) / (win * 4)), 1)
|
909 |
-
if sections > max_sections:
|
910 |
-
logger.error(f"Too many sections ({sections}) for job {jid}")
|
911 |
-
print(f"{red(f'API: Too many sections ({sections}) for job {jid}')}")
|
912 |
-
raise ValueError(f"Too many sections ({sections})")
|
913 |
-
logger.info(f"Job {jid} sections: {sections}, pad_seq: {[3] + [2] * (sections - 3) + [1, 0] if sections > 4 else list(reversed(range(sections)))}")
|
914 |
-
hist_lat = torch.zeros((1, 16, 1 + 2 + 16, h // 8, w // 8), dtype=torch.float16).cpu()
|
915 |
-
hist_px = None
|
916 |
-
total = 0
|
917 |
-
pad_seq = [3] + [2] * (sections - 3) + [1, 0] if sections > 4 else list(reversed(range(sections)))
|
918 |
-
section_count = 0
|
919 |
-
for pad in pad_seq:
|
920 |
-
section_count += 1
|
921 |
-
if section_count > max_sections:
|
922 |
-
logger.error(f"Max sections ({max_sections}) exceeded for job {jid}")
|
923 |
-
print(f"{red(f'API: Max sections ({max_sections}) exceeded for job {jid}')}")
|
924 |
-
raise ValueError(f"Max sections ({max_sections}) exceeded")
|
925 |
-
last = pad == 0
|
926 |
-
logger.info(f"Job {jid} processing pad: {pad}, last: {last}")
|
927 |
-
|
928 |
-
def cb(d):
|
929 |
-
if job_status[jid]["status"] == "complete":
|
930 |
-
return
|
931 |
-
pv = vae_decode_fake(d["denoised"])
|
932 |
-
pv = (pv * 255).cpu().numpy().clip(0, 255).astype(np.uint8)
|
933 |
-
pv = einops.rearrange(pv, "b c t h w -> (b h) (t w) c")
|
934 |
-
cur = d["i"] + 1
|
935 |
-
job_status[jid]["progress"] = (cur / stp) * 100
|
936 |
-
progress_message = f"API: Job {jid} Progress {cur}/{stp} ({job_status[jid]['progress']:.1f}%)"
|
937 |
-
logger.info(progress_message)
|
938 |
-
print(yellow(progress_message))
|
939 |
-
stream.output_queue.push(('progress', (pv, f"{cur}/{stp}", make_progress_bar_html(int(100 * cur / stp), f"{cur}/{stp}"))))
|
940 |
-
try:
|
941 |
-
if hasattr(stream.input_queue, "qsize") and stream.input_queue.qsize() > 0:
|
942 |
-
if stream.input_queue.get_nowait() == "end":
|
943 |
-
stream.output_queue.push(("end", "Job stopped by client"))
|
944 |
-
raise KeyboardInterrupt
|
945 |
-
except queue.Empty:
|
946 |
-
pass
|
947 |
-
|
948 |
-
idx = torch.arange(0, sum([1, pad * win, win, 1, 2, 16]))[None].to(device=gpu)
|
949 |
-
a, b, c, d, e, f = idx.split([1, pad * win, win, 1, 2, 16], 1)
|
950 |
-
clean_idx = torch.cat([a, d], 1)
|
951 |
-
pre = start_lat.to(hist_lat)
|
952 |
-
post, two, four = hist_lat[:, :, :1 + 2 + 16].split([1, 2, 16], 2)
|
953 |
-
clean = torch.cat([pre, post], 2)
|
954 |
-
if not hv:
|
955 |
-
unload_complete_models()
|
956 |
-
move_model_to_device_with_memory_preservation(transformer, gpu, keep)
|
957 |
-
transformer.initialize_teacache(tea, stp)
|
958 |
-
new_lat = sample_hunyuan(
|
959 |
-
transformer=transformer, sampler="unipc", width=w, height=h, frames=win * 4 - 3,
|
960 |
-
real_guidance_scale=cfg, distilled_guidance_scale=gsc, guidance_rescale=rsc,
|
961 |
-
num_inference_steps=stp, generator=gen,
|
962 |
-
prompt_embeds=lv, prompt_embeds_mask=m, prompt_poolers=cp,
|
963 |
-
negative_prompt_embeds=lv_n, negative_prompt_embeds_mask=m_n, negative_prompt_poolers=cp_n,
|
964 |
-
device=gpu, dtype=torch.bfloat16, image_embeddings=img_emb,
|
965 |
-
latent_indices=c, clean_latents=clean, clean_latent_indices=clean_idx,
|
966 |
-
clean_latents_2x=two, clean_latent_2x_indices=e,
|
967 |
-
clean_latents_4x=four, clean_latent_4x_indices=f, callback=cb
|
968 |
-
)
|
969 |
-
if last:
|
970 |
-
new_lat = torch.cat([start_lat.to(new_lat), new_lat], 2)
|
971 |
-
total += new_lat.shape[2]
|
972 |
-
hist_lat = torch.cat([new_lat.to(hist_lat), hist_lat], 2)
|
973 |
-
if not hv:
|
974 |
-
offload_model_from_device_for_memory_preservation(transformer, gpu, 8)
|
975 |
-
load_model_as_complete(vae, gpu)
|
976 |
-
real = hist_lat[:, :, :total]
|
977 |
-
if hist_px is None:
|
978 |
-
hist_px = vae_decode(real, vae).cpu()
|
979 |
-
else:
|
980 |
-
overlap = win * 4 - 3
|
981 |
-
curr = vae_decode(real[:, :, :win * 2], vae).cpu()
|
982 |
-
hist_px = soft_append_bcthw(curr, hist_px, overlap)
|
983 |
-
if not hv:
|
984 |
-
unload_complete_models()
|
985 |
-
tmp_path = os.path.join(VIDEO_TMP_DIR, f"{jid}_{total}.mp4")
|
986 |
-
save_bcthw_as_mp4(hist_px, tmp_path, fps=30, crf=crf)
|
987 |
-
os.chmod(tmp_path, 0o664)
|
988 |
-
stream.output_queue.push(('file', tmp_path))
|
989 |
-
if last:
|
990 |
-
fin_path = os.path.join(VIDEO_OUTPUT_DIR, f"{jid}_{total}.mp4")
|
991 |
-
try:
|
992 |
-
os.replace(tmp_path, fin_path)
|
993 |
-
os.chmod(fin_path, 0o664)
|
994 |
-
job_status[jid]["status"] = "complete"
|
995 |
-
job_status[jid]["render_time"] = time.time() - start_time
|
996 |
-
stream.output_queue.push(('complete', fin_path))
|
997 |
-
clear_queue(stream.input_queue)
|
998 |
-
clear_queue(stream.output_queue)
|
999 |
-
logger.info(f"Final video saved: {fin_path}, render time: {job_status[jid]['render_time']:.2f}s")
|
1000 |
-
print(f"{green(f'API: Final video saved: {fin_path}')}")
|
1001 |
-
return fin_path
|
1002 |
-
except Exception as e:
|
1003 |
-
logger.error(f"Failed to save final video: {e}")
|
1004 |
-
print(f"{red(f'API: Failed to save final video: {e}')}")
|
1005 |
-
raise
|
1006 |
-
torch.cuda.empty_cache()
|
1007 |
-
except Exception as e:
|
1008 |
-
logger.error(f"Worker failed: {e}", exc_info=True)
|
1009 |
-
print(f"{red(f'API: Worker error: {e}')}")
|
1010 |
-
traceback.print_exc()
|
1011 |
-
job_status[jid]["status"] = "error"
|
1012 |
-
stream.output_queue.push(("end", str(e)))
|
1013 |
-
return None
|
1014 |
-
finally:
|
1015 |
-
if jid in active_jobs:
|
1016 |
-
active_jobs.pop(jid, None)
|
1017 |
-
clear_queue(stream.input_queue)
|
1018 |
-
clear_queue(stream.output_queue)
|
1019 |
-
if job_status.get(jid, {}).get("status") not in ["complete", "error", "stopped"]:
|
1020 |
-
job_status[jid]["status"] = "complete"
|
1021 |
-
torch.cuda.empty_cache()
|
1022 |
-
|
1023 |
-
@torch.no_grad()
|
1024 |
-
def process(img, prm, npr, sd, sec, win, stp, cfg, gsc, rsc, kee, tea, crf, disable_prompt_mods, link_steps_window):
|
1025 |
-
if img is None:
|
1026 |
-
raise gr.Error("Upload an image")
|
1027 |
-
yield None, None, "", "", gr.update(interactive=False), gr.update(interactive=True)
|
1028 |
-
stream = AsyncStream()
|
1029 |
-
jid = str(uuid.uuid4())
|
1030 |
-
asyncio.run(worker(img_np=img, prompt=prm, negative_prompt=npr, seed=sd, secs=sec, win=win, stp=stp, cfg=cfg, gsc=gsc, rsc=rsc, keep=kee, tea=tea, crf=crf, camera_action="Static Camera", disable_prompt_mods=disable_prompt_mods, link_steps_window=link_steps_window, stream=stream, jid=jid))
|
1031 |
-
out, log = None, ""
|
1032 |
-
try:
|
1033 |
-
while True:
|
1034 |
-
flag, data = stream.output_queue.next()
|
1035 |
-
if job_status.get(jid, {}).get("status") == "complete":
|
1036 |
-
break
|
1037 |
-
if flag == "file":
|
1038 |
-
out = data
|
1039 |
-
yield out, gr.update(), gr.update(), log, gr.update(interactive=False), gr.update(interactive=True)
|
1040 |
-
if flag == "progress":
|
1041 |
-
pv, desc, html = data
|
1042 |
-
log = desc
|
1043 |
-
yield gr.update(), gr.update(visible=True, value=pv), desc, html, gr.update(interactive=False), gr.update(interactive=True)
|
1044 |
-
if flag == "complete":
|
1045 |
-
yield data, gr.update(visible=False), "Generation complete", "", gr.update(interactive=True), gr.update(interactive=False)
|
1046 |
-
break
|
1047 |
-
if flag == "end":
|
1048 |
-
yield out, gr.update(visible=False), f"Error: {data}", "", gr.update(interactive=True), gr.update(interactive=False)
|
1049 |
-
break
|
1050 |
except Exception as e:
|
1051 |
-
logger.error(f"
|
1052 |
-
|
1053 |
-
|
1054 |
-
finally:
|
1055 |
-
clear_queue(stream.input_queue)
|
1056 |
-
clear_queue(stream.output_queue)
|
1057 |
-
torch.cuda.empty_cache()
|
1058 |
-
|
1059 |
-
def end_process():
|
1060 |
-
global stream
|
1061 |
-
if stream:
|
1062 |
-
stream.input_queue.push("end")
|
1063 |
-
logger.info("Gradio: Render stop requested")
|
1064 |
-
print(f"{red('Gradio: Render stop requested')}")
|
1065 |
-
|
1066 |
-
# Gradio UI (same as original)
|
1067 |
-
quick_prompts = [
|
1068 |
-
["Smooth animation: A character waves for 3 seconds, then stands still for 2 seconds, static camera, silent."],
|
1069 |
-
["Smooth animation: A character moves for 5 seconds, static camera, silent."]
|
1070 |
-
]
|
1071 |
-
css = make_progress_bar_css() + """
|
1072 |
-
.orange-button{background:#ff6200;color:#fff;border-color:#ff6200;}
|
1073 |
-
.load-button{background:#4CAF50;color:#fff;border-color:#4CAF50;margin-left:10px;}
|
1074 |
-
.big-setting-button{background:#0066cc;color:#fff;border:none;padding:14px 24px;font-size:18px;width:100%;border-radius:6px;margin:8px 0;}
|
1075 |
-
.styled-dropdown{width:250px;padding:5px;border-radius:4px;}
|
1076 |
-
.viewer-column{width:100%;max-width:900px;margin:0 auto;}
|
1077 |
-
.media-preview img,.media-preview video{max-width:100%;height:380px;object-fit:contain;border:1px solid #444;border-radius:6px;}
|
1078 |
-
.media-container{display:flex;gap:20px;align-items:flex-start;}
|
1079 |
-
.control-box{min-width:220px;}
|
1080 |
-
.control-grid{display:grid;grid-template-columns:1fr 1fr;gap:10px;}
|
1081 |
-
.image-gallery{display:grid!important;grid-template-columns:repeat(auto-fit,minmax(300px,1fr))!important;gap:10px;padding:10px!important;overflow-y:auto!important;max-height:360px!important;}
|
1082 |
-
.image-gallery .gallery-item{padding:10px;height:360px!important;width:300px!important;}
|
1083 |
-
.image-gallery img{object-fit:contain;height:360px!important;width:300px!important;}
|
1084 |
-
.video-gallery{display:grid!important;grid-template-columns:repeat(auto-fit,minmax(300px,1fr))!important;gap:10px;padding:10px!important;overflow-y:auto!important;max-height:360px!important;}
|
1085 |
-
.video-gallery .gallery-item{padding:10px;height:360px!important;width:300px!important;}
|
1086 |
-
.video-gallery video{object-fit:contain;height:360px!important;width:300px!important;}
|
1087 |
-
.stop-button {background-color: #ff4d4d !important; color: white !important;}
|
1088 |
-
"""
|
1089 |
-
|
1090 |
-
blk = gr.Blocks(css=css, title="GhostPack F1 Pro").queue()
|
1091 |
-
with blk:
|
1092 |
-
gr.Markdown("# 👻 GhostPack F1 Pro")
|
1093 |
-
with gr.Tabs():
|
1094 |
-
with gr.TabItem("👻 Generate"):
|
1095 |
-
with gr.Row():
|
1096 |
-
with gr.Column():
|
1097 |
-
img_in = gr.Image(sources="upload", type="numpy", label="Image", height=320)
|
1098 |
-
generate_button = gr.Button("Generate Video", elem_id="generate_button")
|
1099 |
-
stop_button = gr.Button("Stop Generation", elem_id="stop_button", elem_classes="stop-button")
|
1100 |
-
prm = gr.Textbox(
|
1101 |
-
label="Prompt",
|
1102 |
-
value="Smooth animation: A female stands with subtle, sensual micro-movements, breathing gently, slight head tilt, static camera, silent",
|
1103 |
-
elem_id="prompt_input",
|
1104 |
-
)
|
1105 |
-
npr = gr.Textbox(
|
1106 |
-
label="Negative Prompt",
|
1107 |
-
value="low quality, blurry, speaking, talking, moaning, vocalizing, lip movement, mouth animation, sound, dialogue, speech, whispering, shouting, lip sync, facial animation, expressive face, verbal expression, animated mouth",
|
1108 |
-
elem_id="negative_prompt_input",
|
1109 |
-
)
|
1110 |
-
save_msg = gr.Markdown("")
|
1111 |
-
disable_prompt_mods = gr.Checkbox(label="Disable Prompt Modifications", value=False)
|
1112 |
-
link_steps_window = gr.Checkbox(label="Link Steps and Latent Window", value=True)
|
1113 |
-
btn_save = gr.Button("Save Prompt")
|
1114 |
-
btn1, btn2, btn3 = (
|
1115 |
-
gr.Button("Load Most Recent"),
|
1116 |
-
gr.Button("Load 2nd Recent"),
|
1117 |
-
gr.Button("Load 3rd Recent"),
|
1118 |
-
)
|
1119 |
-
ds = gr.Dataset(samples=quick_prompts, label="Quick List", components=[prm])
|
1120 |
-
ds.click(lambda x: x[0], [ds], [prm])
|
1121 |
-
btn_save.click(save_prompt_fn, [prm, npr], [save_msg])
|
1122 |
-
btn1.click(lambda: load_prompt_fn(0), [], [prm])
|
1123 |
-
btn2.click(lambda: load_prompt_fn(1), [], [prm])
|
1124 |
-
btn3.click(lambda: load_prompt_fn(2), [], [prm])
|
1125 |
-
camera_action_input = gr.Dropdown(
|
1126 |
-
choices=[
|
1127 |
-
"Static Camera", "Slight Orbit Left", "Slight Orbit Right",
|
1128 |
-
"Slight Orbit Up", "Slight Orbit Down", "Top-Down View",
|
1129 |
-
"Slight Zoom In", "Slight Zoom Out",
|
1130 |
-
],
|
1131 |
-
label="Camera Action",
|
1132 |
-
value="Static Camera",
|
1133 |
-
elem_id="camera_action_input",
|
1134 |
-
info="Select a camera movement to append to the prompt.",
|
1135 |
-
)
|
1136 |
-
camera_action_input.change(
|
1137 |
-
fn=lambda prompt, camera_action: update_prompt(prompt, camera_action),
|
1138 |
-
inputs=[prm, camera_action_input],
|
1139 |
-
outputs=prm,
|
1140 |
-
)
|
1141 |
-
with gr.Column():
|
1142 |
-
pv = gr.Image(label="Next Latents", height=200, visible=False)
|
1143 |
-
vid = gr.Video(label="Finished", autoplay=True, height=500, loop=True, show_share_button=False)
|
1144 |
-
log_md = gr.Markdown("")
|
1145 |
-
bar = gr.HTML("")
|
1146 |
-
with gr.Column():
|
1147 |
-
se = gr.Number(label="Seed", value=31337, precision=0, elem_id="seed_input")
|
1148 |
-
sec = gr.Slider(label="Video Length (s)", minimum=1, maximum=10, value=8.0, step=0.1, elem_id="video_length_input")
|
1149 |
-
win = gr.Slider(label="Latent Window", minimum=1, maximum=10, value=3, step=1, elem_id="latent_window_input")
|
1150 |
-
stp = gr.Slider(label="Steps", minimum=1, maximum=100, value=12, step=1, elem_id="steps_input")
|
1151 |
-
cfg = gr.Slider(label="CFG", minimum=1, maximum=32, value=1.7, step=0.01, elem_id="cfg_input")
|
1152 |
-
gsc = gr.Slider(label="Distilled CFG", minimum=1, maximum=32, value=4.0, step=0.01, elem_id="distilled_cfg_input")
|
1153 |
-
rsc = gr.Slider(label="CFG Re-Scale", minimum=0, maximum=1, value=0.5, step=0.01, elem_id="cfg_rescale_input")
|
1154 |
-
kee = gr.Slider(label="GPU Keep (GB)", minimum=6, maximum=free_mem, value=6.5, step=0.1, elem_id="gpu_keep_input")
|
1155 |
-
crf = gr.Slider(label="MP4 CRF", minimum=0, maximum=100, value=20, step=1, elem_id="mp4_crf_input")
|
1156 |
-
tea = gr.Checkbox(label="Use TeaCache", value=True, elem_id="use_teacache_input")
|
1157 |
-
generate_button.click(
|
1158 |
-
fn=process,
|
1159 |
-
inputs=[img_in, prm, npr, se, sec, win, stp, cfg, gsc, rsc, kee, tea, crf, disable_prompt_mods, link_steps_window],
|
1160 |
-
outputs=[vid, pv, log_md, bar, generate_button, stop_button],
|
1161 |
-
)
|
1162 |
-
stop_button.click(fn=end_process)
|
1163 |
-
gr.Button("Update Progress").click(fn=lambda: get_progress(), outputs=[log_md, bar])
|
1164 |
-
|
1165 |
-
with gr.TabItem("🖼️ Image Gallery"):
|
1166 |
-
with gr.Row(elem_classes="media-container"):
|
1167 |
-
with gr.Column(scale=3):
|
1168 |
-
image_preview = gr.Image(
|
1169 |
-
label="Viewer", value=(list_images()[0] if list_images() else None),
|
1170 |
-
interactive=False, elem_classes="media-preview",
|
1171 |
-
)
|
1172 |
-
with gr.Column(elem_classes="control-box"):
|
1173 |
-
image_dropdown = gr.Dropdown(
|
1174 |
-
choices=[os.path.basename(i) for i in list_images()],
|
1175 |
-
value=(os.path.basename(list_images()[0]) if list_images() else None),
|
1176 |
-
label="Select", elem_classes="styled-dropdown",
|
1177 |
-
)
|
1178 |
-
with gr.Row(elem_classes="control-grid"):
|
1179 |
-
load_btn = gr.Button("Load", elem_classes="load-button")
|
1180 |
-
next_btn = gr.Button("Next", elem_classes="load-button")
|
1181 |
-
with gr.Row(elem_classes="control-grid"):
|
1182 |
-
refresh_btn = gr.Button("Refresh")
|
1183 |
-
delete_btn = gr.Button("Delete", elem_classes="orange-button")
|
1184 |
-
image_gallery = gr.Gallery(
|
1185 |
-
value=list_images(), label="Thumbnails", columns=6, height=360,
|
1186 |
-
allow_preview=False, type="filepath", elem_classes="image-gallery",
|
1187 |
-
)
|
1188 |
-
load_btn.click(load_image, [image_dropdown], [image_preview, image_dropdown])
|
1189 |
-
next_btn.click(next_image_and_load, [image_dropdown], [image_preview, image_dropdown])
|
1190 |
-
refresh_btn.click(
|
1191 |
-
lambda: (
|
1192 |
-
gr.update(choices=[os.path.basename(i) for i in list_images()], value=os.path.basename(list_images()[0]) if list_images() else None),
|
1193 |
-
gr.update(value=list_images()[0] if list_images() else None),
|
1194 |
-
gr.update(value=list_images()),
|
1195 |
-
),
|
1196 |
-
[], [image_dropdown, image_preview, image_gallery],
|
1197 |
-
)
|
1198 |
-
delete_btn.click(
|
1199 |
-
lambda sel: (
|
1200 |
-
os.remove(os.path.join(VIDEO_IMG_DIR, sel)) if sel and os.path.exists(os.path.join(VIDEO_IMG_DIR, sel)) else None
|
1201 |
-
) or load_image(""),
|
1202 |
-
[image_dropdown], [image_preview, image_dropdown],
|
1203 |
-
)
|
1204 |
-
image_gallery.select(gallery_image_select, [], [image_preview, image_dropdown])
|
1205 |
-
|
1206 |
-
with gr.TabItem("🎬 Video Gallery"):
|
1207 |
-
with gr.Row(elem_classes="media-container"):
|
1208 |
-
with gr.Column(scale=3):
|
1209 |
-
video_preview = gr.Video(
|
1210 |
-
label="Viewer", value=(list_videos()[0] if list_videos() else None),
|
1211 |
-
autoplay=True, loop=True, interactive=False, elem_classes="media-preview",
|
1212 |
-
)
|
1213 |
-
with gr.Column(elem_classes="control-box"):
|
1214 |
-
video_dropdown = gr.Dropdown(
|
1215 |
-
choices=[os.path.basename(v) for v in list_videos()],
|
1216 |
-
value=(os.path.basename(list_videos()[0]) if list_videos() else None),
|
1217 |
-
label="Select", elem_classes="styled-dropdown",
|
1218 |
-
)
|
1219 |
-
with gr.Row(elem_classes="control-grid"):
|
1220 |
-
load_vbtn = gr.Button("Load", elem_classes="load-button")
|
1221 |
-
next_vbtn = gr.Button("Next", elem_classes="load-button")
|
1222 |
-
with gr.Row(elem_classes="control-grid"):
|
1223 |
-
refresh_v = gr.Button("Refresh")
|
1224 |
-
delete_v = gr.Button("Delete", elem_classes="orange-button")
|
1225 |
-
video_gallery = gr.Gallery(
|
1226 |
-
value=list_videos(), label="Thumbnails", columns=6, height=360,
|
1227 |
-
allow_preview=False, type="filepath", elem_classes="video-gallery",
|
1228 |
-
)
|
1229 |
-
load_vbtn.click(load_video, [video_dropdown], [video_preview, video_dropdown])
|
1230 |
-
next_vbtn.click(next_video_and_load, [video_dropdown], [video_preview, video_dropdown])
|
1231 |
-
refresh_v.click(
|
1232 |
-
lambda: (
|
1233 |
-
gr.update(choices=[os.path.basename(v) for v in list_videos()], value=os.path.basename(list_videos()[0]) if list_videos() else None),
|
1234 |
-
gr.update(value=list_videos()[0] if list_videos() else None),
|
1235 |
-
gr.update(value=list_videos()),
|
1236 |
-
),
|
1237 |
-
[], [video_dropdown, video_preview, video_gallery],
|
1238 |
-
)
|
1239 |
-
delete_v.click(
|
1240 |
-
lambda sel: (
|
1241 |
-
os.remove(os.path.join(VIDEO_OUTPUT_DIR, sel)) if sel and os.path.exists(os.path.join(VIDEO_OUTPUT_DIR, sel)) else None
|
1242 |
-
) or load_video(""),
|
1243 |
-
[video_dropdown], [video_preview, video_dropdown],
|
1244 |
-
)
|
1245 |
-
video_gallery.select(gallery_video_select, [], [video_preview, video_dropdown])
|
1246 |
-
|
1247 |
-
with gr.TabItem("👻 About"):
|
1248 |
-
gr.Markdown("## GhostPack F1 Pro")
|
1249 |
-
with gr.Row():
|
1250 |
-
with gr.Column():
|
1251 |
-
gr.Markdown("**🛠️ Description**\nImage-to-Video toolkit powered by HunyuanVideo & FramePack-F1")
|
1252 |
-
with gr.Column():
|
1253 |
-
gr.Markdown(f"**📦 Version**\n{VERSION}")
|
1254 |
-
with gr.Column():
|
1255 |
-
gr.Markdown("**✍️ Author**\nGhostAI")
|
1256 |
-
with gr.Column():
|
1257 |
-
gr.Markdown("**🔗 Repo**\nhttps://huggingface.co/spaces/ghostai1/ghostvidspace")
|
1258 |
-
|
1259 |
-
with gr.TabItem("⚙️ Settings"):
|
1260 |
-
ct = gr.Button("Clear Temp", elem_classes="big-setting-button")
|
1261 |
-
ctmsg = gr.Markdown("")
|
1262 |
-
co = gr.Button("Clear Old", elem_classes="big-setting-button")
|
1263 |
-
comsg = gr.Markdown("")
|
1264 |
-
ci = gr.Button("Clear Images", elem_classes="big-setting-button")
|
1265 |
-
cimg = gr.Markdown("")
|
1266 |
-
cv = gr.Button("Clear Videos", elem_classes="big-setting-button")
|
1267 |
-
cvid = gr.Markdown("")
|
1268 |
-
ct.click(clear_temp_videos, [], ctmsg)
|
1269 |
-
co.click(clear_old_files, [], comsg)
|
1270 |
-
ci.click(clear_images, [], cimg)
|
1271 |
-
cv.click(clear_videos, [], cvid)
|
1272 |
-
|
1273 |
-
with gr.TabItem("🛠️ Install"):
|
1274 |
-
xs = gr.Textbox(value=status_xformers(), interactive=False, label="xformers")
|
1275 |
-
bx = gr.Button("Install xformers", elem_classes="big-setting-button")
|
1276 |
-
ss = gr.Textbox(value=status_sage(), interactive=False, label="sage-attn")
|
1277 |
-
bs = gr.Button("Install sage-attn", elem_classes="big-setting-button")
|
1278 |
-
fs = gr.Textbox(value=status_flash(), interactive=False, label="flash-attn")
|
1279 |
-
bf = gr.Button("Install flash-attn", elem_classes="big-setting-button")
|
1280 |
-
cs = gr.Textbox(value=status_colorama(), interactive=False, label="colorama")
|
1281 |
-
bc = gr.Button("Install colorama", elem_classes="big-setting-button")
|
1282 |
-
bx.click(install_xformers, [], xs)
|
1283 |
-
bs.click(install_sage_attn, [], ss)
|
1284 |
-
bf.click(install_flash_attn, [], fs)
|
1285 |
-
bc.click(install_colorama, [], cs)
|
1286 |
-
|
1287 |
-
with gr.TabItem("📜 Logs"):
|
1288 |
-
logs = gr.Textbox(lines=20, interactive=False, label="Install Logs")
|
1289 |
-
rl = gr.Button("Refresh", elem_classes="big-setting-button")
|
1290 |
-
cl = gr.Button("Clear", elem_classes="big-setting-button")
|
1291 |
-
rl.click(refresh_logs, [], logs)
|
1292 |
-
cl.click(clear_logs, [], logs)
|
1293 |
-
|
1294 |
-
gr.HTML(
|
1295 |
-
"""
|
1296 |
-
<script>
|
1297 |
-
document.querySelectorAll('.video-gallery video').forEach(v => {
|
1298 |
-
v.addEventListener('loadedmetadata', () => {
|
1299 |
-
if (v.duration > 2) v.currentTime = 2;
|
1300 |
-
});
|
1301 |
-
});
|
1302 |
-
</script>
|
1303 |
-
"""
|
1304 |
-
)
|
1305 |
-
|
1306 |
-
def update_prompt(prompt, camera_action):
|
1307 |
-
camera_actions = [
|
1308 |
-
"static camera", "slight camera orbit left", "slight camera orbit right",
|
1309 |
-
"slight camera orbit up", "slight camera orbit down", "top-down view",
|
1310 |
-
"slight camera zoom in", "slight camera zoom out",
|
1311 |
-
]
|
1312 |
-
for action in camera_actions:
|
1313 |
-
prompt = re.sub(rf",\s*{re.escape(action)}\b", "", prompt, flags=re.IGNORECASE).strip()
|
1314 |
-
if camera_action and camera_action != "None":
|
1315 |
-
camera_phrase = f", {camera_action.lower()}"
|
1316 |
-
if len(prompt.split()) + len(camera_phrase.split()) <= 50:
|
1317 |
-
return prompt + camera_phrase
|
1318 |
-
else:
|
1319 |
-
logger.warning(f"Prompt exceeds 50 words after adding camera action: {prompt}")
|
1320 |
-
print(f"{yellow(f'API: Warning: Prompt exceeds 50 words with camera action')}")
|
1321 |
-
return prompt
|
1322 |
-
|
1323 |
-
def get_progress():
|
1324 |
-
return f"Status: {job_status.get('latest', {'status': 'idle'})['status']}\nProgress: {job_status.get('latest', {'progress': 0.0})['progress']:.1f}%\nLast Render Time: {job_status.get('latest', {'render_time': 0})['render_time']:.1f}s"
|
1325 |
|
1326 |
-
#
|
1327 |
-
|
1328 |
-
|
1329 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
1330 |
sys.exit(1)
|
1331 |
|
1332 |
-
#
|
1333 |
-
|
1334 |
-
|
1335 |
-
|
1336 |
-
|
1337 |
-
|
1338 |
-
|
1339 |
-
|
1340 |
-
|
1341 |
-
sys.exit(1)
|
1342 |
-
|
1343 |
-
if __name__ == "__main__":
|
1344 |
-
try:
|
1345 |
-
logger.info(f"Starting GhostPack F1 Pro Server version {VERSION}")
|
1346 |
-
print(f"Starting GhostPack F1 Pro Server version {VERSION}")
|
1347 |
-
api_thread = Thread(target=run_api)
|
1348 |
-
api_thread.daemon = True
|
1349 |
-
api_thread.start()
|
1350 |
-
time.sleep(5)
|
1351 |
-
try:
|
1352 |
-
response = requests.get(f"http://{args.server}:{args.port}/health", timeout=10)
|
1353 |
-
if response.status_code != 200:
|
1354 |
-
raise RuntimeError("FastAPI health check failed")
|
1355 |
-
logger.info("FastAPI health check passed")
|
1356 |
-
print(f"{green('FastAPI health check passed')}")
|
1357 |
-
except Exception as e:
|
1358 |
-
logger.error(f"FastAPI not ready: {e}")
|
1359 |
-
print(f"{red(f'Error: FastAPI not ready: {e}')}")
|
1360 |
-
sys.exit(1)
|
1361 |
|
1362 |
-
|
1363 |
-
|
1364 |
-
print(f"{green(f'Starting Gradio UI on {args.server}:7860')}")
|
1365 |
-
server = blk.launch(
|
1366 |
-
server_name=args.server,
|
1367 |
-
server_port=7860,
|
1368 |
-
share=args.share,
|
1369 |
-
inbrowser=args.inbrowser,
|
1370 |
-
prevent_thread_lock=True,
|
1371 |
-
allowed_paths=["/"]
|
1372 |
-
)
|
1373 |
-
if args.share and server.share_url:
|
1374 |
-
logger.info(f"Public Gradio URL: {server.share_url}")
|
1375 |
-
print(f"{yellow(f'Public Gradio URL: {server.share_url}')}")
|
1376 |
-
logger.info(f"Gradio UI running on http://{args.server}:7860")
|
1377 |
-
print
|
|
|
1 |
#!/usr/bin/env python3
|
2 |
+
# FILE: install_deps.py
|
3 |
+
# Description: Installs all dependencies and downloads models for GhostPack F1 Pro on Hugging Face Spaces with H200 GPU
|
4 |
+
# Version: 1.0.0
|
5 |
+
# Timestamp: 2025-07-02 04:20 CDT
|
6 |
+
# Author: Grok 3, built by xAI
|
7 |
+
# NOTE: Installs PyTorch 2.4.1 with CUDA 12.1, dependencies, and downloads models to /data/models
|
8 |
+
# Requires HF_TOKEN set as environment variable or secret
|
9 |
+
# Run this before app.py
|
10 |
+
# Logs to /data/install_deps.log
|
|
|
|
|
|
|
|
|
11 |
|
12 |
import os
|
13 |
import sys
|
|
|
|
|
|
|
|
|
14 |
import subprocess
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
import logging
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
# Set up logging
|
18 |
logging.basicConfig(
|
19 |
+
filename="/data/install_deps.log",
|
20 |
level=logging.DEBUG,
|
21 |
format="%(asctime)s %(levelname)s:%(message)s",
|
22 |
)
|
23 |
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
# Create log directory
|
26 |
+
os.makedirs("/data", exist_ok=True)
|
27 |
+
os.chmod("/data", 0o775)
|
28 |
+
logger.info("Starting dependency installation and model download")
|
29 |
|
30 |
+
# Function to run shell commands
|
31 |
+
def run_command(command, error_message):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
try:
|
33 |
+
result = subprocess.run(command, check=True, capture_output=True, text=True)
|
34 |
+
logger.info(f"Command succeeded: {' '.join(command)}\n{result.stdout}")
|
35 |
+
print(f"Command succeeded: {' '.join(command)}")
|
36 |
+
return True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
except subprocess.CalledProcessError as e:
|
38 |
+
logger.error(f"{error_message}: {e}\n{e.stderr}")
|
39 |
+
print(f"{error_message}: {e}")
|
40 |
+
sys.exit(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
# Update pip
|
43 |
+
logger.info("Upgrading pip...")
|
44 |
+
run_command(
|
45 |
+
[sys.executable, "-m", "pip", "install", "--upgrade", "pip"],
|
46 |
+
"ERROR: Failed to upgrade pip"
|
|
|
|
|
|
|
47 |
)
|
48 |
|
49 |
+
# Install PyTorch with CUDA 12.1
|
50 |
+
logger.info("Installing PyTorch 2.4.1 with CUDA 12.1...")
|
51 |
+
run_command(
|
52 |
+
[sys.executable, "-m", "pip", "install", "torch==2.4.1+cu121", "--index-url", "https://download.pytorch.org/whl/cu121"],
|
53 |
+
"ERROR: Failed to install PyTorch"
|
54 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
# Install dependencies
|
57 |
+
logger.info("Installing required dependencies...")
|
58 |
+
with open("requirements.txt", "w") as f:
|
59 |
+
f.write("""transformers==4.44.2
|
60 |
+
fastapi==0.115.0
|
61 |
+
uvicorn==0.30.6
|
62 |
+
gradio==4.44.0
|
63 |
+
python-multipart==0.0.9
|
64 |
+
diffusers==0.30.3
|
65 |
+
pydantic==2.9.2
|
66 |
+
einops==0.8.0
|
67 |
+
numpy==1.26.4
|
68 |
+
pillow==10.4.0
|
69 |
+
requests==2.32.3
|
70 |
+
colorama==0.4.6
|
71 |
+
# Note: diffusers_helper must be included as a folder in the Space's root directory (/diffusers_helper)
|
72 |
+
""")
|
73 |
+
run_command(
|
74 |
+
[sys.executable, "-m", "pip", "install", "-r", "requirements.txt"],
|
75 |
+
"ERROR: Failed to install dependencies"
|
76 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
+
# Install optional dependencies
|
79 |
+
logger.info("Installing optional dependencies (xformers, sage-attn, flash-attn)...")
|
80 |
+
for pkg, warn in [
|
81 |
+
("xformers", "WARNING: Failed to install xformers"),
|
82 |
+
("sage-attn", "WARNING: Failed to install sage-attn"),
|
83 |
+
("flash-attn", "WARNING: Failed to install flash-attn")
|
84 |
+
]:
|
85 |
+
try:
|
86 |
+
run_command([sys.executable, "-m", "pip", "install", pkg], warn)
|
87 |
+
except SystemExit:
|
88 |
+
logger.warning(warn)
|
89 |
+
print(warn)
|
90 |
+
|
91 |
+
# Download models
|
92 |
+
logger.info("Downloading models to /data/models...")
|
93 |
+
MODEL_DIR = "/data/models"
|
94 |
+
HF_TOKEN = os.getenv('HF_TOKEN', 'your-hf-token') # Set in Spaces secrets
|
95 |
|
96 |
+
os.makedirs(MODEL_DIR, exist_ok=True)
|
97 |
+
os.chmod(MODEL_DIR, 0o775)
|
98 |
+
logger.info(f"Created model directory: {MODEL_DIR}")
|
99 |
|
100 |
+
from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer, SiglipImageProcessor, SiglipVisionModel
|
101 |
+
from diffusers import AutoencoderKLHunyuanVideo
|
102 |
+
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
|
103 |
|
104 |
+
def download_model(model_class, model_name, subfolder=None, **kwargs):
|
105 |
try:
|
106 |
+
logger.info(f"Downloading {model_name} (subfolder: {subfolder}) to {MODEL_DIR}")
|
107 |
+
model = model_class.from_pretrained(
|
108 |
+
model_name,
|
109 |
+
subfolder=subfolder,
|
110 |
+
token=HF_TOKEN,
|
111 |
+
cache_dir=MODEL_DIR,
|
112 |
+
local_files_only=False,
|
113 |
+
**kwargs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
)
|
115 |
+
logger.info(f"Successfully downloaded {model_name} (subfolder: {subfolder})")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
except Exception as e:
|
117 |
+
logger.error(f"Failed to download {model_name} (subfolder: {subfolder}): {e}")
|
118 |
+
print(f"Error: Failed to download {model_name} (subfolder: {subfolder}): {e}")
|
119 |
+
sys.exit(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
+
# Download HunyuanVideo components
|
122 |
+
try:
|
123 |
+
download_model(LlamaModel, "hunyuanvideo-community/HunyuanVideo", subfolder="text_encoder", torch_dtype=torch.float16)
|
124 |
+
download_model(CLIPTextModel, "hunyuanvideo-community/HunyuanVideo", subfolder="text_encoder_2", torch_dtype=torch.float16)
|
125 |
+
download_model(LlamaTokenizerFast, "hunyuanvideo-community/HunyuanVideo", subfolder="tokenizer")
|
126 |
+
download_model(CLIPTokenizer, "hunyuanvideo-community/HunyuanVideo", subfolder="tokenizer_2")
|
127 |
+
download_model(AutoencoderKLHunyuanVideo, "hunyuanvideo-community/HunyuanVideo", subfolder="vae", torch_dtype=torch.float16)
|
128 |
+
except Exception as e:
|
129 |
+
logger.error(f"Failed to download HunyuanVideo components: {e}")
|
130 |
+
print(f"Error: Failed to download HunyuanVideo components: {e}")
|
131 |
sys.exit(1)
|
132 |
|
133 |
+
# Download FramePack components
|
134 |
+
try:
|
135 |
+
download_model(SiglipImageProcessor, "lllyasviel/flux_redux_bfl", subfolder="feature_extractor")
|
136 |
+
download_model(SiglipVisionModel, "lllyasviel/flux_redux_bfl", subfolder="image_encoder", torch_dtype=torch.float16)
|
137 |
+
download_model(HunyuanVideoTransformer3DModelPacked, "lllyasviel/FramePack_F1_I2V_HY_20250503", torch_dtype=torch.bfloat16)
|
138 |
+
except Exception as e:
|
139 |
+
logger.error(f"Failed to download FramePack components: {e}")
|
140 |
+
print(f"Error: Failed to download FramePack components: {e}")
|
141 |
+
sys.exit(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
+
logger.info("Dependency installation and model download completed successfully")
|
144 |
+
print("Dependency installation and model download completed successfully")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|