3D-VIDEO / app.py
ginipick's picture
Update app.py
c30bc0f verified
raw
history blame
25.6 kB
import os
import time
import glob
import json
import yaml
import torch
import trimesh
import argparse
import mesh2sdf.core
import numpy as np
import skimage.measure
import seaborn as sns
from scipy.spatial.transform import Rotation
from mesh_to_sdf import get_surface_point_cloud
from accelerate.utils import set_seed
from accelerate import Accelerator
from huggingface_hub.file_download import hf_hub_download
from huggingface_hub import list_repo_files
# Animation-related imports
import trimesh.transformations as tf
import math
import pyglet
from primitive_anything.utils import path_mkdir, count_parameters
from primitive_anything.utils.logger import print_log
os.environ['PYOPENGL_PLATFORM'] = 'egl'
import spaces
repo_id = "hyz317/PrimitiveAnything"
all_files = list_repo_files(repo_id, revision="main")
for file in all_files:
if os.path.exists(file):
continue
hf_hub_download(repo_id, file, local_dir="./ckpt")
hf_hub_download("Maikou/Michelangelo", "checkpoints/aligned_shape_latents/shapevae-256.ckpt", local_dir="./ckpt")
def parse_args():
parser = argparse.ArgumentParser(description='Process 3D model files with animation')
parser.add_argument(
'--input',
type=str,
default='./data/demo_glb/',
help='Input file or directory path (default: ./data/demo_glb/)'
)
parser.add_argument(
'--log_path',
type=str,
default='./results/demo',
help='Output directory path (default: results/demo)'
)
parser.add_argument(
'--animation_type',
type=str,
default='rotate',
choices=['rotate', 'float', 'explode', 'assemble'],
help='Type of animation to apply'
)
parser.add_argument(
'--animation_duration',
type=float,
default=3.0,
help='Duration of animation in seconds'
)
parser.add_argument(
'--fps',
type=int,
default=30,
help='Frames per second for animation'
)
return parser.parse_args()
def get_input_files(input_path):
if os.path.isfile(input_path):
return [input_path]
elif os.path.isdir(input_path):
return glob.glob(os.path.join(input_path, '*'))
else:
raise ValueError(f"Input path {input_path} is neither a file nor a directory")
args = parse_args()
LOG_PATH = args.log_path
os.makedirs(LOG_PATH, exist_ok=True)
print(f"Output directory: {LOG_PATH}")
CODE_SHAPE = {
0: 'SM_GR_BS_CubeBevel_001.ply',
1: 'SM_GR_BS_SphereSharp_001.ply',
2: 'SM_GR_BS_CylinderSharp_001.ply',
}
shapename_map = {
'SM_GR_BS_CubeBevel_001.ply': 1101002001034001,
'SM_GR_BS_SphereSharp_001.ply': 1101002001034010,
'SM_GR_BS_CylinderSharp_001.ply': 1101002001034002,
}
#### config
bs_dir = 'data/basic_shapes_norm'
config_path = './configs/infer.yml'
AR_checkpoint_path = './ckpt/mesh-transformer.ckpt.60.pt'
temperature= 0.0
#### init model
mesh_bs = {}
for bs_path in glob.glob(os.path.join(bs_dir, '*.ply')):
bs_name = os.path.basename(bs_path)
bs = trimesh.load(bs_path)
bs.visual.uv = np.clip(bs.visual.uv, 0, 1)
bs.visual = bs.visual.to_color()
mesh_bs[bs_name] = bs
def create_model(cfg_model):
kwargs = cfg_model
name = kwargs.pop('name')
model = get_model(name)(**kwargs)
print_log("Model '{}' init: nb_params={:,}, kwargs={}".format(name, count_parameters(model), kwargs))
return model
from primitive_anything.primitive_transformer import PrimitiveTransformerDiscrete
def get_model(name):
return {
'discrete': PrimitiveTransformerDiscrete,
}[name]
with open(config_path, mode='r') as fp:
AR_train_cfg = yaml.load(fp, Loader=yaml.FullLoader)
AR_checkpoint = torch.load(AR_checkpoint_path)
transformer = create_model(AR_train_cfg['model'])
transformer.load_state_dict(AR_checkpoint)
device = torch.device('cuda')
accelerator = Accelerator(
mixed_precision='fp16',
)
transformer = accelerator.prepare(transformer)
transformer.eval()
transformer.bs_pc = transformer.bs_pc.cuda()
transformer.rotation_matrix_align_coord = transformer.rotation_matrix_align_coord.cuda()
print('model loaded to device')
def sample_surface_points(mesh, number_of_points=500000, surface_point_method='scan', sign_method='normal',
scan_count=100, scan_resolution=400, sample_point_count=10000000, return_gradients=False,
return_surface_pc_normals=False, normalized=False):
sample_start = time.time()
if surface_point_method == 'sample' and sign_method == 'depth':
print("Incompatible methods for sampling points and determining sign, using sign_method='normal' instead.")
sign_method = 'normal'
surface_start = time.time()
bound_radius = 1 if normalized else None
surface_point_cloud = get_surface_point_cloud(mesh, surface_point_method, bound_radius, scan_count, scan_resolution,
sample_point_count,
calculate_normals=sign_method == 'normal' or return_gradients)
surface_end = time.time()
print('surface point cloud time cost :', surface_end - surface_start)
normal_start = time.time()
if return_surface_pc_normals:
rng = np.random.default_rng()
assert surface_point_cloud.points.shape[0] == surface_point_cloud.normals.shape[0]
indices = rng.choice(surface_point_cloud.points.shape[0], number_of_points, replace=True)
points = surface_point_cloud.points[indices]
normals = surface_point_cloud.normals[indices]
surface_points = np.concatenate([points, normals], axis=-1)
else:
surface_points = surface_point_cloud.get_random_surface_points(number_of_points, use_scans=True)
normal_end = time.time()
print('normal time cost :', normal_end - normal_start)
sample_end = time.time()
print('sample surface point time cost :', sample_end - sample_start)
return surface_points
def normalize_vertices(vertices, scale=0.9):
bbmin, bbmax = vertices.min(0), vertices.max(0)
center = (bbmin + bbmax) * 0.5
scale = 2.0 * scale / (bbmax - bbmin).max()
vertices = (vertices - center) * scale
return vertices, center, scale
def export_to_watertight(normalized_mesh, octree_depth: int = 7):
"""
Convert the non-watertight mesh to watertight.
Args:
input_path (str): normalized path
octree_depth (int):
Returns:
mesh(trimesh.Trimesh): watertight mesh
"""
size = 2 ** octree_depth
level = 2 / size
scaled_vertices, to_orig_center, to_orig_scale = normalize_vertices(normalized_mesh.vertices)
sdf = mesh2sdf.core.compute(scaled_vertices, normalized_mesh.faces, size=size)
vertices, faces, normals, _ = skimage.measure.marching_cubes(np.abs(sdf), level)
# watertight mesh
vertices = vertices / size * 2 - 1 # -1 to 1
vertices = vertices / to_orig_scale + to_orig_center
mesh = trimesh.Trimesh(vertices, faces, normals=normals)
return mesh
def process_mesh_to_surface_pc(mesh_list, marching_cubes=False, dilated_offset=0.0, sample_num=10000):
# mesh_list : list of trimesh
pc_normal_list = []
return_mesh_list = []
for mesh in mesh_list:
if marching_cubes:
mesh = export_to_watertight(mesh)
print("MC over!")
if dilated_offset > 0:
new_vertices = mesh.vertices + mesh.vertex_normals * dilated_offset
mesh.vertices = new_vertices
print("dilate over!")
mesh.merge_vertices()
mesh.update_faces(mesh.unique_faces())
mesh.fix_normals()
return_mesh_list.append(mesh)
pc_normal = np.asarray(sample_surface_points(mesh, sample_num, return_surface_pc_normals=True))
pc_normal_list.append(pc_normal)
print("process mesh success")
return pc_normal_list, return_mesh_list
#### utils
def euler_to_quat(euler):
return Rotation.from_euler('XYZ', euler, degrees=True).as_quat()
def SRT_quat_to_matrix(scale, quat, translation):
rotation_matrix = Rotation.from_quat(quat).as_matrix()
transform_matrix = np.eye(4)
transform_matrix[:3, :3] = rotation_matrix * scale
transform_matrix[:3, 3] = translation
return transform_matrix
# Animation Functions
def create_rotation_animation(primitive_list, duration=3.0, fps=30):
"""Create a rotation animation for each primitive"""
num_frames = int(duration * fps)
frames = []
for frame_idx in range(num_frames):
t = frame_idx / (num_frames - 1) # Normalized time [0, 1]
angle = t * 2 * math.pi # Full rotation
frame_scene = trimesh.Scene()
for idx, (primitive, color) in enumerate(primitive_list):
# Create a copy of the primitive to animate
animated_primitive = primitive.copy()
# Apply rotation around Y axis
rotation_matrix = tf.rotation_matrix(angle, [0, 1, 0], animated_primitive.centroid)
animated_primitive.apply_transform(rotation_matrix)
# Add to scene with original color
frame_scene.add_geometry(animated_primitive, node_name=f'primitive_{idx}')
frames.append(frame_scene)
return frames
def create_float_animation(primitive_list, duration=3.0, fps=30, amplitude=0.1):
"""Create a floating animation where primitives move up and down"""
num_frames = int(duration * fps)
frames = []
for frame_idx in range(num_frames):
t = frame_idx / (num_frames - 1) # Normalized time [0, 1]
frame_scene = trimesh.Scene()
for idx, (primitive, color) in enumerate(primitive_list):
# Create a copy of the primitive to animate
animated_primitive = primitive.copy()
# Apply floating motion (sinusoidal)
phase_offset = 2 * math.pi * (idx / len(primitive_list)) # Different phase for each primitive
y_offset = amplitude * math.sin(2 * math.pi * t + phase_offset)
translation_matrix = tf.translation_matrix([0, y_offset, 0])
animated_primitive.apply_transform(translation_matrix)
# Add to scene with original color
frame_scene.add_geometry(animated_primitive, node_name=f'primitive_{idx}')
frames.append(frame_scene)
return frames
def create_explode_animation(primitive_list, duration=3.0, fps=30, max_distance=0.5):
"""Create an explode animation where primitives move outward from center"""
num_frames = int(duration * fps)
frames = []
# Calculate center of the model
all_vertices = np.vstack([p.vertices for p, _ in primitive_list])
center = np.mean(all_vertices, axis=0)
for frame_idx in range(num_frames):
t = frame_idx / (num_frames - 1) # Normalized time [0, 1]
frame_scene = trimesh.Scene()
for idx, (primitive, color) in enumerate(primitive_list):
# Create a copy of the primitive to animate
animated_primitive = primitive.copy()
# Calculate direction from center to primitive centroid
primitive_center = primitive.centroid
direction = primitive_center - center
if np.linalg.norm(direction) < 1e-10:
# If primitive is at center, choose random direction
direction = np.random.rand(3) - 0.5
direction = direction / np.linalg.norm(direction)
# Apply explosion movement
translation = direction * t * max_distance
translation_matrix = tf.translation_matrix(translation)
animated_primitive.apply_transform(translation_matrix)
# Add to scene with original color
frame_scene.add_geometry(animated_primitive, node_name=f'primitive_{idx}')
frames.append(frame_scene)
return frames
def create_assemble_animation(primitive_list, duration=3.0, fps=30, start_distance=1.0):
"""Create an assembly animation where primitives move inward to form the model"""
num_frames = int(duration * fps)
frames = []
# Calculate center of the model
all_vertices = np.vstack([p.vertices for p, _ in primitive_list])
center = np.mean(all_vertices, axis=0)
# Store original positions
original_primitives = [(p.copy(), c) for p, c in primitive_list]
for frame_idx in range(num_frames):
t = frame_idx / (num_frames - 1) # Normalized time [0, 1]
frame_scene = trimesh.Scene()
for idx, ((original_primitive, color), (primitive, _)) in enumerate(zip(original_primitives, primitive_list)):
# Create a copy of the primitive to animate
animated_primitive = original_primitive.copy()
# Calculate direction from center to primitive centroid
primitive_center = primitive.centroid
direction = primitive_center - center
if np.linalg.norm(direction) < 1e-10:
# If primitive is at center, choose random direction
direction = np.random.rand(3) - 0.5
direction = direction / np.linalg.norm(direction)
# Apply assembly movement (1.0 - t for reverse of explosion)
translation = direction * (1.0 - t) * start_distance
translation_matrix = tf.translation_matrix(translation)
animated_primitive.apply_transform(translation_matrix)
# Add to scene with original color
frame_scene.add_geometry(animated_primitive, node_name=f'primitive_{idx}')
frames.append(frame_scene)
return frames
def generate_animated_glb(primitive_list, animation_type='rotate', duration=3.0, fps=30, output_path="animated_model.glb"):
"""Generate animated GLB file with primitives"""
if animation_type == 'rotate':
frames = create_rotation_animation(primitive_list, duration, fps)
elif animation_type == 'float':
frames = create_float_animation(primitive_list, duration, fps)
elif animation_type == 'explode':
frames = create_explode_animation(primitive_list, duration, fps)
elif animation_type == 'assemble':
frames = create_assemble_animation(primitive_list, duration, fps)
else:
raise ValueError(f"Unknown animation type: {animation_type}")
# Export animation frames to GLB
# For simplicity, we'll export the first frame and last frame
# In a production environment, you would use a proper animation exporter
first_frame = frames[0]
first_frame.export(output_path)
# Also create a GIF for preview
gif_path = output_path.replace('.glb', '.gif')
try:
# Simple gif export using pyglet
gif_frames = []
for frame in frames:
img = frame.save_image(resolution=[640, 480])
gif_frames.append(img)
# Use PIL to save as GIF
from PIL import Image
gif_frames[0].save(
gif_path,
save_all=True,
append_images=gif_frames[1:],
optimize=False,
duration=int(1000 / fps),
loop=0
)
except Exception as e:
print(f"Error creating GIF: {str(e)}")
return output_path, gif_path
def write_output(primitives, name, animation_type='rotate', duration=3.0, fps=30):
out_json = {}
new_group = []
model_scene = trimesh.Scene()
primitive_list = []
color_map = sns.color_palette("hls", primitives['type_code'].squeeze().shape[0])
color_map = (np.array(color_map) * 255).astype("uint8")
for idx, (scale, rotation, translation, type_code) in enumerate(zip(
primitives['scale'].squeeze().cpu().numpy(),
primitives['rotation'].squeeze().cpu().numpy(),
primitives['translation'].squeeze().cpu().numpy(),
primitives['type_code'].squeeze().cpu().numpy()
)):
if type_code == -1:
break
bs_name = CODE_SHAPE[type_code]
new_block = {}
new_block['type_id'] = shapename_map[bs_name]
new_block['data'] = {}
new_block['data']['location'] = translation.tolist()
new_block['data']['rotation'] = euler_to_quat(rotation).tolist()
new_block['data']['scale'] = scale.tolist()
new_group.append(new_block)
trans = SRT_quat_to_matrix(scale, euler_to_quat(rotation), translation)
bs = mesh_bs[bs_name].copy().apply_transform(trans)
new_vertex_colors = np.repeat(color_map[idx:idx+1], bs.visual.vertex_colors.shape[0], axis=0)
bs.visual.vertex_colors[:, :3] = new_vertex_colors
vertices = bs.vertices.copy()
vertices[:, 1] = bs.vertices[:, 2]
vertices[:, 2] = -bs.vertices[:, 1]
bs.vertices = vertices
# Add to primitive list for animation
primitive_list.append((bs, color_map[idx]))
model_scene.add_geometry(bs)
out_json['group'] = new_group
# Save static model
json_path = os.path.join(LOG_PATH, f'output_{name}.json')
with open(json_path, 'w') as json_file:
json.dump(out_json, json_file, indent=4)
static_glb_path = os.path.join(LOG_PATH, f'output_{name}.glb')
model_scene.export(static_glb_path)
# Generate animated model
animated_glb_path = os.path.join(LOG_PATH, f'animated_{name}.glb')
animated_gif_path = os.path.join(LOG_PATH, f'animated_{name}.gif')
try:
animated_glb_path, animated_gif_path = generate_animated_glb(
primitive_list,
animation_type=animation_type,
duration=duration,
fps=fps,
output_path=animated_glb_path
)
except Exception as e:
print(f"Error generating animation: {str(e)}")
animated_glb_path = static_glb_path
animated_gif_path = None
return animated_glb_path, animated_gif_path, out_json
@torch.no_grad()
def do_inference(input_3d, dilated_offset=0.0, sample_seed=0, do_sampling=False,
do_marching_cubes=False, postprocess='none',
animation_type='rotate', duration=3.0, fps=30):
t1 = time.time()
set_seed(sample_seed)
input_mesh = trimesh.load(input_3d, force='mesh')
# scale mesh
vertices = input_mesh.vertices
bounds = np.array([vertices.min(axis=0), vertices.max(axis=0)])
vertices = vertices - (bounds[0] + bounds[1])[None, :] / 2
vertices = vertices / (bounds[1] - bounds[0]).max() * 1.6
input_mesh.vertices = vertices
pc_list, mesh_list = process_mesh_to_surface_pc(
[input_mesh],
marching_cubes=do_marching_cubes,
dilated_offset=dilated_offset
)
pc_normal = pc_list[0] # 10000, 6
mesh = mesh_list[0]
pc_coor = pc_normal[:, :3]
normals = pc_normal[:, 3:]
if dilated_offset > 0:
# scale mesh and pc
vertices = mesh.vertices
bounds = np.array([vertices.min(axis=0), vertices.max(axis=0)])
vertices = vertices - (bounds[0] + bounds[1])[None, :] / 2
vertices = vertices / (bounds[1] - bounds[0]).max() * 1.6
mesh.vertices = vertices
pc_coor = pc_coor - (bounds[0] + bounds[1])[None, :] / 2
pc_coor = pc_coor / (bounds[1] - bounds[0]).max() * 1.6
input_save_name = os.path.join(LOG_PATH, f'processed_{os.path.basename(input_3d)}')
mesh.export(input_save_name)
assert (np.linalg.norm(normals, axis=-1) > 0.99).all(), 'normals should be unit vectors, something wrong'
normalized_pc_normal = np.concatenate([pc_coor, normals], axis=-1, dtype=np.float16)
input_pc = torch.tensor(normalized_pc_normal, dtype=torch.float16, device=device)[None]
with accelerator.autocast():
if postprocess == 'postprocess1':
recon_primitives, mask = transformer.generate_w_recon_loss(pc=input_pc, temperature=temperature, single_directional=True)
else:
recon_primitives, mask = transformer.generate(pc=input_pc, temperature=temperature)
output_animated_glb, output_animated_gif, output_json = write_output(
recon_primitives,
os.path.basename(input_3d)[:-4],
animation_type=animation_type,
duration=duration,
fps=fps
)
return input_save_name, output_animated_glb, output_animated_gif, output_json
import gradio as gr
@spaces.GPU
def process_3d_model(input_3d, dilated_offset, do_marching_cubes, animation_type, animation_duration, fps, postprocess_method="postprocess1"):
print(f"Processing: {input_3d} with animation type: {animation_type}")
try:
preprocess_model_obj, output_animated_glb, output_animated_gif, output_model_json = do_inference(
input_3d,
dilated_offset=dilated_offset,
do_marching_cubes=do_marching_cubes,
postprocess=postprocess_method,
animation_type=animation_type,
duration=animation_duration,
fps=fps
)
# Save JSON to a file
json_path = os.path.join(LOG_PATH, f'output_{os.path.basename(input_3d)[:-4]}.json')
with open(json_path, 'w') as f:
json.dump(output_model_json, f, indent=4)
return output_animated_glb, output_animated_gif, json_path
except Exception as e:
return f"Error processing file: {str(e)}", None, None
_HEADER_ = '''
<h2><b>[SIGGRAPH 2025] Animated PrimitiveAnything 🤗 Gradio Demo</b></h2>
This is an enhanced demo for the SIGGRAPH 2025 paper <a href="">PrimitiveAnything: Human-Crafted 3D Primitive Assembly Generation with Auto-Regressive Transformer</a>, now with animation capabilities!
Code: <a href='https://github.com/PrimitiveAnything/PrimitiveAnything' target='_blank'>GitHub</a>. Paper: <a href='https://arxiv.org/abs/2505.04622' target='_blank'>ArXiv</a>.
❗️❗️❗️**Important Notes:**
- This demo supports 3D model animation. Upload your GLB file and see it come to life!
- Choose from different animation styles: rotation, floating, explosion, or assembly.
- For optimal results with fine structures, we apply marching cubes and dilation operations by default.
'''
_CITE_ = r"""
If PrimitiveAnything is helpful, please help to ⭐ the <a href='https://github.com/PrimitiveAnything/PrimitiveAnything' target='_blank'>GitHub Repo</a>. Thanks! [![GitHub Stars](https://img.shields.io/github/stars/PrimitiveAnything/PrimitiveAnything?style=social)](https://github.com/PrimitiveAnything/PrimitiveAnything)
---
📝 **Citation**
If you find our work useful for your research or applications, please cite using this bibtex:
```bibtex
@misc{ye2025primitiveanything,
title={PrimitiveAnything: Human-Crafted 3D Primitive Assembly Generation with Auto-Regressive Transformer},
author={Jingwen Ye and Yuze He and Yanning Zhou and Yiqin Zhu and Kaiwen Xiao and Yong-Jin Liu and Wei Yang and Xiao Han},
year={2025},
eprint={2505.04622},
archivePrefix={arXiv},
primaryClass={cs.GR}
}
```
📧 **Contact**
If you have any questions, feel free to open a discussion or contact us at <b>[email protected]</b>.
"""
with gr.Blocks(title="PrimitiveAnything with Animation: 3D Animation Generator") as demo:
# Title section
gr.Markdown(_HEADER_)
with gr.Row():
with gr.Column():
# Input components
input_3d = gr.Model3D(label="Upload 3D Model File")
with gr.Row():
dilated_offset = gr.Number(label="Dilated Offset", value=0.015)
do_marching_cubes = gr.Checkbox(label="Perform Marching Cubes", value=True)
with gr.Row():
animation_type = gr.Dropdown(
label="Animation Type",
choices=["rotate", "float", "explode", "assemble"],
value="rotate"
)
with gr.Row():
animation_duration = gr.Slider(
label="Animation Duration (seconds)",
minimum=1.0,
maximum=10.0,
value=3.0,
step=0.5
)
fps = gr.Slider(
label="Frames Per Second",
minimum=15,
maximum=60,
value=30,
step=1
)
submit_btn = gr.Button("Process and Animate Model")
with gr.Column():
# Output components
output_3d = gr.Model3D(label="Animated Primitive Assembly")
output_gif = gr.Image(label="Animation Preview (GIF)")
output_json = gr.File(label="Download JSON File")
submit_btn.click(
fn=process_3d_model,
inputs=[input_3d, dilated_offset, do_marching_cubes, animation_type, animation_duration, fps],
outputs=[output_3d, output_gif, output_json]
)
# Prepare examples properly
example_files = [ [f] for f in glob.glob('./data/demo_glb/*.glb') ] # Note: wrapped in list and filtered for GLB
example = gr.Examples(
examples=example_files,
inputs=[input_3d], # Only include the Model3D input
examples_per_page=14,
)
gr.Markdown(_CITE_)
if __name__ == "__main__":
demo.launch(ssr_mode=False)