Spaces:
Running
on
Zero
Running
on
Zero
import random | |
import os | |
import uuid | |
from datetime import datetime | |
import gradio as gr | |
import numpy as np | |
import spaces | |
import torch | |
from diffusers import DiffusionPipeline | |
from PIL import Image, ImageDraw, ImageFont | |
import requests | |
import json | |
import re | |
# Create permanent storage directory | |
SAVE_DIR = "saved_images" # Gradio will handle the persistence | |
if not os.path.exists(SAVE_DIR): | |
os.makedirs(SAVE_DIR, exist_ok=True) | |
# Load the default image | |
DEFAULT_IMAGE_PATH = "cover1.webp" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
repo_id = "black-forest-labs/FLUX.1-dev" | |
adapter_id = "prithivMLmods/EBook-Creative-Cover-Flux-LoRA" | |
pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16) | |
pipeline.load_lora_weights(adapter_id) | |
pipeline = pipeline.to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
def is_korean_only(text): | |
"""Check if text contains only Korean characters (excluding spaces and punctuation)""" | |
# Remove spaces and common punctuation | |
cleaned_text = re.sub(r'[\s\.,!?]', '', text) | |
# Check if all remaining characters are Korean | |
return bool(cleaned_text) and all('\uAC00' <= char <= '\uD7A3' for char in cleaned_text) | |
def augment_prompt_with_llm(prompt): | |
"""Augment Korean prompt using Friendli LLM API""" | |
token = os.getenv("FRIENDLI_TOKEN") | |
if not token: | |
return prompt # Return original if no token | |
url = "https://api.friendli.ai/dedicated/v1/chat/completions" | |
headers = { | |
"Authorization": f"Bearer {token}", | |
"Content-Type": "application/json" | |
} | |
# Create a system message for prompt augmentation | |
system_message = """You are an expert at creating detailed, artistic prompts for ebook cover generation. | |
When given a Korean prompt, expand it into a detailed English description suitable for AI image generation. | |
Focus on visual elements, artistic style, composition, lighting, and mood. | |
Always end the prompt with '[trigger]' to activate the LoRA model.""" | |
payload = { | |
"model": "dep89a2fld32mcm", | |
"messages": [ | |
{ | |
"role": "system", | |
"content": system_message | |
}, | |
{ | |
"role": "user", | |
"content": f"λ€μ νκ΅μ΄ ν둬ννΈλ₯Ό μ μμ± νμ§ μμ±μ μν μμΈν μμ΄ ν둬ννΈλ‘ νμ₯ν΄μ£ΌμΈμ: {prompt}" | |
} | |
], | |
"max_tokens": 500, | |
"top_p": 0.8, | |
"stream": False | |
} | |
try: | |
response = requests.post(url, json=payload, headers=headers, timeout=30) | |
if response.status_code == 200: | |
result = response.json() | |
augmented_prompt = result['choices'][0]['message']['content'] | |
return augmented_prompt | |
else: | |
print(f"API Error: {response.status_code}") | |
return prompt | |
except Exception as e: | |
print(f"Error calling LLM API: {e}") | |
return prompt | |
def get_korean_font(font_size): | |
"""Load NanumGothic font from the same directory as app.py""" | |
try: | |
# Try to load NanumGothic-Regular.ttf from the same directory | |
font_path = "NanumGothic-Regular.ttf" | |
return ImageFont.truetype(font_path, font_size) | |
except: | |
# If font file is not found, try alternative paths | |
alternative_paths = [ | |
"./NanumGothic-Regular.ttf", | |
os.path.join(os.path.dirname(__file__), "NanumGothic-Regular.ttf"), | |
] | |
for path in alternative_paths: | |
try: | |
return ImageFont.truetype(path, font_size) | |
except: | |
continue | |
# Final fallback to default font | |
print("Warning: NanumGothic-Regular.ttf not found. Using default font.") | |
return ImageFont.load_default() | |
def add_text_overlay(image, title_ko, author_ko, | |
title_position, author_position, text_color, | |
title_size, author_size): | |
"""Add Korean text overlay to the generated image""" | |
# Create a copy of the image to work with | |
img_with_text = image.copy() | |
draw = ImageDraw.Draw(img_with_text) | |
# Load Korean fonts with custom sizes | |
title_font = get_korean_font(title_size) | |
author_font = get_korean_font(author_size) | |
# Get image dimensions | |
img_width, img_height = img_with_text.size | |
# Define position mappings | |
position_coords = { | |
"μλ¨": (img_width // 2, img_height // 10), | |
"μ€μ": (img_width // 2, img_height // 2), | |
"νλ¨": (img_width // 2, img_height * 9 // 10) | |
} | |
# Draw title (Korean only) | |
if title_ko: | |
title_x, title_y = position_coords[title_position] | |
# Get text bbox for centering | |
bbox = draw.textbbox((0, 0), title_ko, font=title_font) | |
text_width = bbox[2] - bbox[0] | |
text_height = bbox[3] - bbox[1] | |
# Draw text with shadow for better visibility | |
shadow_offset = 2 | |
draw.text((title_x - text_width // 2 + shadow_offset, title_y - text_height // 2 + shadow_offset), | |
title_ko, font=title_font, fill="black") | |
draw.text((title_x - text_width // 2, title_y - text_height // 2), | |
title_ko, font=title_font, fill=text_color) | |
# Draw author (Korean only) | |
if author_ko: | |
# Add "μ§μμ΄: " prefix if not already present | |
if not author_ko.startswith("μ§μμ΄"): | |
author_text = f"μ§μμ΄: {author_ko}" | |
else: | |
author_text = author_ko | |
author_x, author_y = position_coords[author_position] | |
# Get text bbox for centering | |
bbox = draw.textbbox((0, 0), author_text, font=author_font) | |
text_width = bbox[2] - bbox[0] | |
text_height = bbox[3] - bbox[1] | |
# Draw text with shadow | |
draw.text((author_x - text_width // 2 + shadow_offset, author_y - text_height // 2 + shadow_offset), | |
author_text, font=author_font, fill="black") | |
draw.text((author_x - text_width // 2, author_y - text_height // 2), | |
author_text, font=author_font, fill=text_color) | |
return img_with_text | |
def save_generated_image(image, prompt): | |
# Generate unique filename with timestamp | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
unique_id = str(uuid.uuid4())[:8] | |
filename = f"{timestamp}_{unique_id}.png" | |
filepath = os.path.join(SAVE_DIR, filename) | |
# Save the image | |
image.save(filepath) | |
# Save metadata | |
metadata_file = os.path.join(SAVE_DIR, "metadata.txt") | |
with open(metadata_file, "a", encoding="utf-8") as f: | |
f.write(f"{filename}|{prompt}|{timestamp}\n") | |
return filepath | |
def load_generated_images(): | |
if not os.path.exists(SAVE_DIR): | |
return [] | |
# Load all images from the directory | |
image_files = [os.path.join(SAVE_DIR, f) for f in os.listdir(SAVE_DIR) | |
if f.endswith(('.png', '.jpg', '.jpeg', '.webp'))] | |
# Sort by creation time (newest first) | |
image_files.sort(key=lambda x: os.path.getctime(x), reverse=True) | |
return image_files | |
def load_predefined_images(): | |
# Return empty list since we're not using predefined images | |
return [] | |
def inference( | |
prompt: str, | |
seed: int, | |
randomize_seed: bool, | |
width: int, | |
height: int, | |
guidance_scale: float, | |
num_inference_steps: int, | |
lora_scale: float, | |
title_ko: str, | |
author_ko: str, | |
title_position: str, | |
author_position: str, | |
text_color: str, | |
title_size: int, | |
author_size: int, | |
progress: gr.Progress = gr.Progress(track_tqdm=True), | |
): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator(device=device).manual_seed(seed) | |
image = pipeline( | |
prompt=prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator, | |
joint_attention_kwargs={"scale": lora_scale}, | |
).images[0] | |
# Add text overlay if any Korean text is provided | |
if title_ko or author_ko: | |
image = add_text_overlay(image, title_ko, author_ko, | |
title_position, author_position, text_color, | |
title_size, author_size) | |
# Save the generated image | |
filepath = save_generated_image(image, prompt) | |
# Return the image, seed, and updated gallery | |
return image, seed, load_generated_images() | |
def augment_prompt(prompt): | |
"""Handle prompt augmentation""" | |
if is_korean_only(prompt): | |
augmented = augment_prompt_with_llm(prompt) | |
return augmented | |
return prompt | |
examples = [ | |
"An anime-style illustration of a handsome male character with long, dark, flowing hair tied back partially with a traditional hairpiece. He wears a flowing, light-colored traditional East Asian robe with dark accents. His expression is thoughtful and slightly troubled, with his hand near his temple. In the blurred background, there are other figures in similar traditional attire, suggesting a scene of action or conflict in a fantasy setting. The overall mood is serious and dramatic, reminiscent of wuxia or xianxia genres.", | |
"A fierce, action-oriented anime illustration of a male knight in full, dark, intricate armor. He has long, flowing dark hair and a confident, determined expression with a slight smirk. He wields a massive, ornate sword with a red glow on its blade, held high above his head in a striking pose. The background is a dramatic, desolate landscape with jagged mountains and a stormy, overcast sky, conveying a sense of epic conflict and adventure.", | |
"A haunting cathedral ruins bathed in ethereal moonlight, with ancient stone archways stretching toward a starlit sky. The title 'WHISPERS OF ETERNITY' appears in weathered silver lettering that seems to float between the pillars. Ghostly wisps of fog curl around crumbling gothic sculptures, while 'By Alexander Blackwood' is inscribed in elegant script that glows with a subtle blue luminescence. Delicate patterns of celestial symbols and arcane runes border the edges. [trigger]", | |
"A massive ancient tree with crystalline leaves dominates the composition, its translucent branches reaching across a sunset sky streaked with impossible colors. 'THE LUMINOUS Crown' is written in intricate golden calligraphy that intertwines with the branches. Mysterious glowing orbs float among the leaves, casting prismatic light. 'By Isabella Moonshadow' appears to be carved into the tree's bark. Sacred geometry patterns shimmer in the background. [trigger]", | |
"A dramatic spiral staircase made of weathered copper and stained glass descends into swirling cosmic depths. The title 'CHRONICLES OF THE INFINITE' spans the spiral in bold art deco typography that seems to be crafted from constellations. Nebulae and galaxies swirl in the background, while 'By Marcus Starweaver' appears to be formed from falling stardust. Complex mechanical clockwork elements frame the corners. [trigger]", | |
"An intricate doorway carved from ancient jade stands solitary in a field of shimmering black sand. 'GATES OF THE IMMORTAL' is emblazoned across the top in powerful metallic letters that seem to be forged from liquid mercury. Ethereal phoenix feathers drift across the scene, leaving trails of golden light. 'By Victoria Jade' flows along the bottom in brushstrokes that resemble living smoke. Sacred Chinese characters appear to float in the background. [trigger]", | |
"A magnificent underwater city of pearl and coral rises from abyssal depths, illuminated by bioluminescent sea life. 'DEPTHS OF WONDER' ripples across the scene in iridescent letters that appear to be formed from living water. Schools of ethereal fish create flowing patterns of light, while 'By Neptune Rivers' shimmers like mother-of-pearl below. Ancient Atlantean symbols pulse with a subtle aqua glow around the borders. [trigger]", | |
"A colossal steampunk clocktower pierces through storm clouds, its gears and mechanisms visible through crystalline walls. 'TIMEKEEPER'S LEGACY' is constructed from intricate brass and copper mechanisms that appear to be in constant motion. Lightning arcs between copper spires, while 'By Theodore Cogsworth' is etched in burnished bronze below. Mathematical equations and alchemical symbols float in the turbulent sky. [trigger]" | |
] | |
with gr.Blocks(theme=gr.themes.Soft(), analytics_enabled=False) as demo: | |
gr.HTML('<div class="title"> eBOOK Cover generation </div>') | |
gr.HTML("""<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fginigen-Book-Cover.hf.space"> | |
<img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fginigen-Book-Cover.hf.space&countColor=%23263759" /> | |
</a>""") | |
with gr.Tabs() as tabs: | |
with gr.Tab("Generation"): | |
with gr.Column(elem_id="col-container"): | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
augment_button = gr.Button("μ¦κ°", scale=0) | |
run_button = gr.Button("Run", scale=0) | |
# Modified to include the default image | |
result = gr.Image( | |
label="Result", | |
show_label=False, | |
value=DEFAULT_IMAGE_PATH # Set the default image | |
) | |
with gr.Accordion("Text Overlay Settings (νκΈ)", open=False): | |
with gr.Row(): | |
with gr.Column(): | |
title_ko = gr.Textbox(label="μ λͺ©", placeholder="νκΈ μ λͺ©μ μ λ ₯νμΈμ") | |
title_position = gr.Radio( | |
label="μ λͺ© μμΉ", | |
choices=["μλ¨", "μ€μ", "νλ¨"], | |
value="μλ¨" | |
) | |
title_size = gr.Slider( | |
label="μ λͺ© κΈμ ν¬κΈ°", | |
minimum=20, | |
maximum=100, | |
value=48, | |
step=2 | |
) | |
with gr.Column(): | |
author_ko = gr.Textbox(label="μ§μμ΄", placeholder="μ§μμ΄ μ΄λ¦μ μ λ ₯νμΈμ") | |
author_position = gr.Radio( | |
label="μ§μμ΄ μμΉ", | |
choices=["μλ¨", "μ€μ", "νλ¨"], | |
value="νλ¨" | |
) | |
author_size = gr.Slider( | |
label="μ§μμ΄ κΈμ ν¬κΈ°", | |
minimum=16, | |
maximum=60, | |
value=32, | |
step=2 | |
) | |
with gr.Row(): | |
font_name = gr.Dropdown( | |
label="ν°νΈ μ ν", | |
choices=["λλκ³ λ", "λλλͺ μ‘°", "λ§μ κ³ λ", "λ°ν", "λμ", "κΈ°λ³Έ"], | |
value="λλκ³ λ" | |
) | |
text_color = gr.ColorPicker( | |
label="κΈμ μμ", | |
value="#FFFFFF" | |
) | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=42, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=768, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=3.5, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=30, | |
) | |
lora_scale = gr.Slider( | |
label="LoRA scale", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
value=1.0, | |
) | |
gr.Examples( | |
examples=examples, | |
inputs=[prompt], | |
outputs=[result, seed], | |
) | |
with gr.Tab("Gallery"): | |
gallery_header = gr.Markdown("### Generated Images Gallery") | |
generated_gallery = gr.Gallery( | |
label="Generated Images", | |
columns=6, | |
show_label=False, | |
value=load_generated_images(), | |
elem_id="generated_gallery", | |
height="auto" | |
) | |
refresh_btn = gr.Button("π Refresh Gallery") | |
# Event handlers | |
def refresh_gallery(): | |
return load_generated_images() | |
refresh_btn.click( | |
fn=refresh_gallery, | |
inputs=None, | |
outputs=generated_gallery, | |
) | |
# Augment button handler | |
augment_button.click( | |
fn=augment_prompt, | |
inputs=[prompt], | |
outputs=[prompt], | |
) | |
# Auto-augment Korean prompts | |
def handle_prompt_change(prompt_text): | |
if is_korean_only(prompt_text): | |
return augment_prompt_with_llm(prompt_text) | |
return prompt_text | |
# Optional: Auto-augment on prompt change (commented out to avoid too many API calls) | |
# prompt.change( | |
# fn=handle_prompt_change, | |
# inputs=[prompt], | |
# outputs=[prompt] | |
# ) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=inference, | |
inputs=[ | |
prompt, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
lora_scale, | |
title_ko, | |
author_ko, | |
title_position, | |
author_position, | |
text_color, | |
title_size, | |
author_size, | |
], | |
outputs=[result, seed, generated_gallery], | |
) | |
demo.queue() | |
demo.launch() |