ginipick's picture
Update app.py
5f17485 verified
import gradio as gr
import numpy as np
import random
import torch
from PIL import Image
import os
import sys
import importlib.util
import spaces
# ์ค‘์š”: ํŒจ์น˜ ์ ์šฉ - huggingface_hub์— cached_download ํ•จ์ˆ˜ ์ถ”๊ฐ€
import huggingface_hub
if not hasattr(huggingface_hub, "cached_download"):
# ๊ธฐ์กด hf_hub_download ํ•จ์ˆ˜๋ฅผ cached_download๋กœ ๋ณ„์นญ ์ถ”๊ฐ€
huggingface_hub.cached_download = huggingface_hub.hf_hub_download
# ๊ทธ ํ›„ ๋‚˜๋จธ์ง€ ์ž„ํฌํŠธ ์ง„ํ–‰
from huggingface_hub import snapshot_download, hf_hub_download, model_info
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter import StableDiffusionXLPipeline
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from kolors.models.unet_2d_condition import UNet2DConditionModel
from diffusers import AutoencoderKL, EulerDiscreteScheduler
device = "cuda"
root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
ckpt_dir = f'{root_dir}/weights/Kolors'
snapshot_download(repo_id="Kwai-Kolors/Kolors", local_dir=ckpt_dir)
snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-Plus", local_dir=f"{root_dir}/weights/Kolors-IP-Adapter-Plus")
# Load models
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
f'{root_dir}/weights/Kolors-IP-Adapter-Plus/image_encoder',
ignore_mismatched_sizes=True
).to(dtype=torch.float16, device=device)
ip_img_size = 336
clip_image_processor = CLIPImageProcessor(size=ip_img_size, crop_size=ip_img_size)
pipe = StableDiffusionXLPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
image_encoder=image_encoder,
feature_extractor=clip_image_processor,
force_zeros_for_empty_prompt=False
).to(device)
if hasattr(pipe.unet, 'encoder_hid_proj'):
pipe.unet.text_encoder_hid_proj = pipe.unet.encoder_hid_proj
pipe.load_ip_adapter(f'{root_dir}/weights/Kolors-IP-Adapter-Plus', subfolder="", weight_name=["ip_adapter_plus_general.bin"])
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
# ----------------------------------------------
# infer ํ•จ์ˆ˜ (๊ธฐ์กด ๋กœ์ง ๊ทธ๋Œ€๋กœ ์œ ์ง€)
# ----------------------------------------------
@spaces.GPU(duration=80)
def infer(
user_prompt,
ip_adapter_image,
ip_adapter_scale=0.5,
negative_prompt="",
seed=100,
randomize_seed=False,
width=1024,
height=1024,
guidance_scale=5.0,
num_inference_steps=50,
progress=gr.Progress(track_tqdm=True)
):
# ์ˆจ๊ฒจ์ง„(๊ธฐ๋ณธ/ํ•„์ˆ˜) ํ”„๋กฌํ”„ํŠธ
hidden_prompt = (
"Ghibli Studio style, Charming hand-drawn anime-style illustration"
)
# ์‹ค์ œ๋กœ ํŒŒ์ดํ”„๋ผ์ธ์— ์ „๋‹ฌํ•  ์ตœ์ข… ํ”„๋กฌํ”„ํŠธ
prompt = f"{hidden_prompt}, {user_prompt}"
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device="cuda").manual_seed(seed)
pipe.to("cuda")
image_encoder.to("cuda")
pipe.image_encoder = image_encoder
pipe.set_ip_adapter_scale([ip_adapter_scale])
image = pipe(
prompt=prompt,
ip_adapter_image=[ip_adapter_image],
negative_prompt=negative_prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=1,
generator=generator,
).images[0]
return image, seed
examples = [
[
"background alps",
"gh0.webp",
0.5
],
[
"dancing",
"gh5.jpg",
0.5
],
[
"smile",
"gh2.jpg",
0.5
],
[
"3d style",
"gh3.webp",
0.6
],
[
"with Pikachu",
"gh4.jpg",
0.5
],
[
"Ghibli Studio style, Charming hand-drawn anime-style illustration",
"gh7.jpg",
0.5
],
[
"Ghibli Studio style, Charming hand-drawn anime-style illustration",
"gh1.jpg",
0.5
],
]
# --------------------------
# ๊ฐœ์„ ๋œ UI๋ฅผ ์œ„ํ•œ CSS
# --------------------------
css = """
body {
background: linear-gradient(135deg, #f5f7fa, #c3cfe2);
font-family: 'Helvetica Neue', Arial, sans-serif;
color: #333;
margin: 0;
padding: 0;
}
#col-container {
margin: 0 auto !important;
max-width: 720px;
background: rgba(255,255,255,0.85);
border-radius: 16px;
padding: 2rem;
box-shadow: 0 8px 24px rgba(0,0,0,0.1);
}
#header-title {
text-align: center;
font-size: 2rem;
font-weight: bold;
margin-bottom: 1rem;
}
#prompt-row {
display: flex;
gap: 0.5rem;
align-items: center;
margin-bottom: 1rem;
}
#prompt-text {
flex: 1;
}
#result img {
object-position: top;
border-radius: 8px;
}
#result .image-container {
height: 100%;
}
.gr-button {
background-color: #2E8BFB !important;
color: white !important;
border: none !important;
transition: background-color 0.2s ease;
}
.gr-button:hover {
background-color: #186EDB !important;
}
.gr-slider input[type=range] {
accent-color: #2E8BFB !important;
}
.gr-box {
background-color: #fafafa !important;
border: 1px solid #ddd !important;
border-radius: 8px !important;
padding: 1rem !important;
}
#advanced-settings {
margin-top: 1rem;
border-radius: 8px;
}
"""
with gr.Blocks(theme="apriel", css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("<div id='header-title'>Ghibli Meme Studio</div>")
gr.Markdown("<div id='header-title' style='font-size: 12px;'>Community: https://discord.gg/openfreeai</div>")
# ์ƒ๋‹จ: ํ”„๋กฌํ”„ํŠธ ์ž…๋ ฅ + ์‹คํ–‰ ๋ฒ„ํŠผ
with gr.Row(elem_id="prompt-row"):
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
elem_id="prompt-text",
)
run_button = gr.Button("Run", elem_id="run-button")
# ๊ฐ€์šด๋ฐ: ์ด๋ฏธ์ง€ ์ž…๋ ฅ๊ณผ ์Šฌ๋ผ์ด๋”, ๊ฒฐ๊ณผ ์ด๋ฏธ์ง€
with gr.Row():
with gr.Column():
ip_adapter_image = gr.Image(label="IP-Adapter Image", type="pil")
ip_adapter_scale = gr.Slider(
label="Image influence scale",
info="Use 1 for creating variations",
minimum=0.0,
maximum=1.0,
step=0.05,
value=0.5,
)
result = gr.Image(label="Result", elem_id="result")
# ํ•˜๋‹จ: ๊ณ ๊ธ‰ ์„ค์ •(Accordion)
with gr.Accordion("Advanced Settings", open=False, elem_id="advanced-settings"):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=2,
placeholder=(
"Copy(worst quality, low quality:1.4), bad anatomy, bad hands, text, error, "
"missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, "
"normal quality, jpeg artifacts, signature, watermark, username, blurry, "
"artist name, (deformed iris, deformed pupils:1.2), (semi-realistic, cgi, "
"3d, render:1.1), amateur, (poorly drawn hands, poorly drawn face:1.2)"
),
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=5.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=100,
step=1,
value=50,
)
# ์˜ˆ์‹œ๋“ค
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt, ip_adapter_image, ip_adapter_scale],
outputs=[result, seed],
cache_examples="lazy"
)
# ๋ฒ„ํŠผ ํด๋ฆญ/ํ”„๋กฌํ”„ํŠธ ์—”ํ„ฐ ์‹œ ์‹คํ–‰
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
ip_adapter_image,
ip_adapter_scale,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps
],
outputs=[result, seed]
)
demo.queue().launch()