Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import json | |
import subprocess | |
import os | |
from llama_cpp import Llama | |
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType | |
from llama_cpp_agent.providers import LlamaCppPythonProvider | |
from llama_cpp_agent.chat_history import BasicChatHistory | |
from llama_cpp_agent.chat_history.messages import Roles | |
import gradio as gr | |
from huggingface_hub import hf_hub_download | |
llm = None | |
llm_model = None | |
# ๋ชจ๋ธ ์ด๋ฆ๊ณผ ๊ฒฝ๋ก๋ฅผ ์ ์ | |
MISTRAL_MODEL_NAME = "Private-BitSix-Mistral-Small-3.1-24B-Instruct-2503.gguf" | |
# ๋ชจ๋ธ ๋ค์ด๋ก๋ | |
model_path = hf_hub_download( | |
repo_id="ginigen/Private-BitSix-Mistral-Small-3.1-24B-Instruct-2503", | |
filename=MISTRAL_MODEL_NAME, | |
local_dir="./models" | |
) | |
print(f"Downloaded model path: {model_path}") | |
css = """ | |
.bubble-wrap { | |
padding-top: calc(var(--spacing-xl) * 3) !important; | |
} | |
.message-row { | |
justify-content: space-evenly !important; | |
width: 100% !important; | |
max-width: 100% !important; | |
margin: calc(var(--spacing-xl)) 0 !important; | |
padding: 0 calc(var(--spacing-xl) * 3) !important; | |
} | |
.flex-wrap.user { | |
border-bottom-right-radius: var(--radius-lg) !important; | |
} | |
.flex-wrap.bot { | |
border-bottom-left-radius: var(--radius-lg) !important; | |
} | |
.message.user{ | |
padding: 10px; | |
} | |
.message.bot{ | |
text-align: right; | |
width: 100%; | |
padding: 10px; | |
border-radius: 10px; | |
} | |
.message-bubble-border { | |
border-radius: 6px !important; | |
} | |
.message-buttons { | |
justify-content: flex-end !important; | |
} | |
.message-buttons-left { | |
align-self: end !important; | |
} | |
.message-buttons-bot, .message-buttons-user { | |
right: 10px !important; | |
left: auto !important; | |
bottom: 2px !important; | |
} | |
.dark.message-bubble-border { | |
border-color: #343140 !important; | |
} | |
.dark.user { | |
background: #1e1c26 !important; | |
} | |
.dark.assistant.dark, .dark.pending.dark { | |
background: #16141c !important; | |
} | |
""" | |
def get_messages_formatter_type(model_name): | |
if "Mistral" in model_name or "BitSix" in model_name: | |
return MessagesFormatterType.CHATML # Mistral ๊ณ์ด ๋ชจ๋ธ์ ChatML ํ์ ์ฌ์ฉ | |
else: | |
raise ValueError(f"Unsupported model: {model_name}") | |
def respond( | |
message, | |
history: list[dict], # history ํญ๋ชฉ์ด tuple์ด ์๋ dict ํ์์ผ๋ก ์ ๋ฌ๋จ | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
top_k, | |
repeat_penalty, | |
): | |
global llm | |
global llm_model | |
chat_template = get_messages_formatter_type(MISTRAL_MODEL_NAME) | |
# ๋ชจ๋ธ ํ์ผ ๊ฒฝ๋ก ํ์ธ | |
model_path_local = os.path.join("./models", MISTRAL_MODEL_NAME) | |
print(f"Model path: {model_path_local}") | |
if not os.path.exists(model_path_local): | |
print(f"Warning: Model file not found at {model_path_local}") | |
print(f"Available files in ./models: {os.listdir('./models')}") | |
if llm is None or llm_model != MISTRAL_MODEL_NAME: | |
llm = Llama( | |
model_path=model_path_local, | |
flash_attn=True, | |
n_gpu_layers=81, | |
n_batch=1024, | |
n_ctx=8192, | |
) | |
llm_model = MISTRAL_MODEL_NAME | |
provider = LlamaCppPythonProvider(llm) | |
agent = LlamaCppAgent( | |
provider, | |
system_prompt=f"{system_message}", | |
predefined_messages_formatter_type=chat_template, | |
debug_output=True | |
) | |
settings = provider.get_provider_default_settings() | |
settings.temperature = temperature | |
settings.top_k = top_k | |
settings.top_p = top_p | |
settings.max_tokens = max_tokens | |
settings.repeat_penalty = repeat_penalty | |
settings.stream = True | |
messages = BasicChatHistory() | |
# history์ ๊ฐ ํญ๋ชฉ์ด dict ํ์์ผ๋ก {'user': <user_message>, 'assistant': <assistant_message>} ํํ๋ผ๊ณ ๊ฐ์ | |
for msn in history: | |
user_message = { | |
'role': Roles.user, | |
'content': msn.get('user', '') | |
} | |
assistant_message = { | |
'role': Roles.assistant, | |
'content': msn.get('assistant', '') | |
} | |
messages.add_message(user_message) | |
messages.add_message(assistant_message) | |
stream = agent.get_chat_response( | |
message, | |
llm_sampling_settings=settings, | |
chat_history=messages, | |
returns_streaming_generator=True, | |
print_output=False | |
) | |
outputs = "" | |
for output in stream: | |
outputs += output | |
yield outputs | |
demo = gr.ChatInterface( | |
fn=respond, | |
title="Ginigen Private AI", | |
description="Private-BitSix-Mistral-Small-3.1-24B-Instruct-2503 is a model optimized to run on local 4090 GPUs through 6-bit quantization, based on Mistral-Small-3.1-24B-Instruct-2503", | |
theme=gr.themes.Soft( | |
primary_hue="violet", | |
secondary_hue="violet", | |
neutral_hue="gray", | |
font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"] | |
).set( | |
body_background_fill_dark="#16141c", | |
block_background_fill_dark="#16141c", | |
block_border_width="1px", | |
block_title_background_fill_dark="#1e1c26", | |
input_background_fill_dark="#292733", | |
button_secondary_background_fill_dark="#24212b", | |
border_color_accent_dark="#343140", | |
border_color_primary_dark="#343140", | |
background_fill_secondary_dark="#16141c", | |
color_accent_soft_dark="transparent", | |
code_background_fill_dark="#292733", | |
), | |
css=css, | |
examples=[ | |
["What are the key advantages of 6-bit quantization for large language models like Mistral?"], | |
["Can you explain the architectural innovations in Mistral models that improve reasoning capabilities?"], | |
["ํ๊ตญ์ด๋ก ๋ณต์กํ ์ถ๋ก ๊ณผ์ ์ ์ค๋ช ํด์ฃผ์ธ์. ๋ฏธ์คํธ๋ ๋ชจ๋ธ์ ์ฅ์ ์ ํ์ฉํ ์์๋ ํจ๊ป ๋ค์ด์ฃผ์ธ์."] | |
], | |
additional_inputs=[ | |
gr.Textbox( | |
value="You are a deep thinking AI, you may use extremely long chains of thought to deeply consider the problem and deliberate with yourself via systematic reasoning processes to help come to a correct solution prior to answering. You should enclose your thoughts and internal monologue inside tags, and then provide your solution or response to the problem.", | |
label="์์คํ ๋ฉ์์ง", | |
lines=5 | |
), | |
gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="์ต๋ ํ ํฐ ์"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), | |
gr.Slider(minimum=0, maximum=100, value=40, step=1, label="Top-k"), | |
gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty"), | |
], | |
chatbot=gr.Chatbot(type="messages") | |
) | |
if __name__ == "__main__": | |
demo.launch() | |