ginipick's picture
Update app.py
919d837 verified
raw
history blame
6.86 kB
import spaces
import json
import subprocess
import os
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
import gradio as gr
from huggingface_hub import hf_hub_download
llm = None
llm_model = None
# ๋ชจ๋ธ ์ด๋ฆ„๊ณผ ๊ฒฝ๋กœ๋ฅผ ์ •์˜
MISTRAL_MODEL_NAME = "Private-BitSix-Mistral-Small-3.1-24B-Instruct-2503.gguf"
# ๋ชจ๋ธ ๋‹ค์šด๋กœ๋“œ
model_path = hf_hub_download(
repo_id="ginigen/Private-BitSix-Mistral-Small-3.1-24B-Instruct-2503",
filename=MISTRAL_MODEL_NAME,
local_dir="./models"
)
print(f"Downloaded model path: {model_path}")
css = """
.bubble-wrap {
padding-top: calc(var(--spacing-xl) * 3) !important;
}
.message-row {
justify-content: space-evenly !important;
width: 100% !important;
max-width: 100% !important;
margin: calc(var(--spacing-xl)) 0 !important;
padding: 0 calc(var(--spacing-xl) * 3) !important;
}
.flex-wrap.user {
border-bottom-right-radius: var(--radius-lg) !important;
}
.flex-wrap.bot {
border-bottom-left-radius: var(--radius-lg) !important;
}
.message.user{
padding: 10px;
}
.message.bot{
text-align: right;
width: 100%;
padding: 10px;
border-radius: 10px;
}
.message-bubble-border {
border-radius: 6px !important;
}
.message-buttons {
justify-content: flex-end !important;
}
.message-buttons-left {
align-self: end !important;
}
.message-buttons-bot, .message-buttons-user {
right: 10px !important;
left: auto !important;
bottom: 2px !important;
}
.dark.message-bubble-border {
border-color: #343140 !important;
}
.dark.user {
background: #1e1c26 !important;
}
.dark.assistant.dark, .dark.pending.dark {
background: #16141c !important;
}
"""
def get_messages_formatter_type(model_name):
if "Mistral" in model_name or "BitSix" in model_name:
return MessagesFormatterType.CHATML # Mistral ๊ณ„์—ด ๋ชจ๋ธ์€ ChatML ํ˜•์‹ ์‚ฌ์šฉ
else:
raise ValueError(f"Unsupported model: {model_name}")
@spaces.GPU(duration=120)
def respond(
message,
history: list[dict], # history ํ•ญ๋ชฉ์ด tuple์ด ์•„๋‹Œ dict ํ˜•์‹์œผ๋กœ ์ „๋‹ฌ๋จ
system_message,
max_tokens,
temperature,
top_p,
top_k,
repeat_penalty,
):
global llm
global llm_model
chat_template = get_messages_formatter_type(MISTRAL_MODEL_NAME)
# ๋ชจ๋ธ ํŒŒ์ผ ๊ฒฝ๋กœ ํ™•์ธ
model_path_local = os.path.join("./models", MISTRAL_MODEL_NAME)
print(f"Model path: {model_path_local}")
if not os.path.exists(model_path_local):
print(f"Warning: Model file not found at {model_path_local}")
print(f"Available files in ./models: {os.listdir('./models')}")
if llm is None or llm_model != MISTRAL_MODEL_NAME:
llm = Llama(
model_path=model_path_local,
flash_attn=True,
n_gpu_layers=81,
n_batch=1024,
n_ctx=8192,
)
llm_model = MISTRAL_MODEL_NAME
provider = LlamaCppPythonProvider(llm)
agent = LlamaCppAgent(
provider,
system_prompt=f"{system_message}",
predefined_messages_formatter_type=chat_template,
debug_output=True
)
settings = provider.get_provider_default_settings()
settings.temperature = temperature
settings.top_k = top_k
settings.top_p = top_p
settings.max_tokens = max_tokens
settings.repeat_penalty = repeat_penalty
settings.stream = True
messages = BasicChatHistory()
# history์˜ ๊ฐ ํ•ญ๋ชฉ์ด dict ํ˜•์‹์œผ๋กœ {'user': <user_message>, 'assistant': <assistant_message>} ํ˜•ํƒœ๋ผ๊ณ  ๊ฐ€์ •
for msn in history:
user_message = {
'role': Roles.user,
'content': msn.get('user', '')
}
assistant_message = {
'role': Roles.assistant,
'content': msn.get('assistant', '')
}
messages.add_message(user_message)
messages.add_message(assistant_message)
stream = agent.get_chat_response(
message,
llm_sampling_settings=settings,
chat_history=messages,
returns_streaming_generator=True,
print_output=False
)
outputs = ""
for output in stream:
outputs += output
yield outputs
demo = gr.ChatInterface(
fn=respond,
title="Ginigen Private AI",
description="Private-BitSix-Mistral-Small-3.1-24B-Instruct-2503 is a model optimized to run on local 4090 GPUs through 6-bit quantization, based on Mistral-Small-3.1-24B-Instruct-2503",
theme=gr.themes.Soft(
primary_hue="violet",
secondary_hue="violet",
neutral_hue="gray",
font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]
).set(
body_background_fill_dark="#16141c",
block_background_fill_dark="#16141c",
block_border_width="1px",
block_title_background_fill_dark="#1e1c26",
input_background_fill_dark="#292733",
button_secondary_background_fill_dark="#24212b",
border_color_accent_dark="#343140",
border_color_primary_dark="#343140",
background_fill_secondary_dark="#16141c",
color_accent_soft_dark="transparent",
code_background_fill_dark="#292733",
),
css=css,
examples=[
["What are the key advantages of 6-bit quantization for large language models like Mistral?"],
["Can you explain the architectural innovations in Mistral models that improve reasoning capabilities?"],
["ํ•œ๊ตญ์–ด๋กœ ๋ณต์žกํ•œ ์ถ”๋ก  ๊ณผ์ •์„ ์„ค๋ช…ํ•ด์ฃผ์„ธ์š”. ๋ฏธ์ŠคํŠธ๋ž„ ๋ชจ๋ธ์˜ ์žฅ์ ์„ ํ™œ์šฉํ•œ ์˜ˆ์‹œ๋„ ํ•จ๊ป˜ ๋“ค์–ด์ฃผ์„ธ์š”."]
],
additional_inputs=[
gr.Textbox(
value="You are a deep thinking AI, you may use extremely long chains of thought to deeply consider the problem and deliberate with yourself via systematic reasoning processes to help come to a correct solution prior to answering. You should enclose your thoughts and internal monologue inside tags, and then provide your solution or response to the problem.",
label="์‹œ์Šคํ…œ ๋ฉ”์‹œ์ง€",
lines=5
),
gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="์ตœ๋Œ€ ํ† ํฐ ์ˆ˜"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
gr.Slider(minimum=0, maximum=100, value=40, step=1, label="Top-k"),
gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty"),
],
chatbot=gr.Chatbot(type="messages")
)
if __name__ == "__main__":
demo.launch()