Wan-2.2-Enhanced / wan /utils /prompt_extend.py
linoyts's picture
linoyts HF Staff
Upload 57 files
ba7cb71 verified
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import json
import logging
import math
import os
import random
import sys
import tempfile
from dataclasses import dataclass
from http import HTTPStatus
from typing import Optional, Union
import dashscope
import torch
from PIL import Image
try:
from flash_attn import flash_attn_varlen_func
FLASH_VER = 2
except ModuleNotFoundError:
flash_attn_varlen_func = None # in compatible with CPU machines
FLASH_VER = None
from .system_prompt import *
DEFAULT_SYS_PROMPTS = {
"t2v-A14B": {
"zh": T2V_A14B_ZH_SYS_PROMPT,
"en": T2V_A14B_EN_SYS_PROMPT,
},
"i2v-A14B": {
"zh": I2V_A14B_ZH_SYS_PROMPT,
"en": I2V_A14B_EN_SYS_PROMPT,
"empty": {
"zh": I2V_A14B_EMPTY_ZH_SYS_PROMPT,
"en": I2V_A14B_EMPTY_EN_SYS_PROMPT,
}
},
"ti2v-5B": {
"t2v": {
"zh": T2V_A14B_ZH_SYS_PROMPT,
"en": T2V_A14B_EN_SYS_PROMPT,
},
"i2v": {
"zh": I2V_A14B_ZH_SYS_PROMPT,
"en": I2V_A14B_EN_SYS_PROMPT,
}
},
}
@dataclass
class PromptOutput(object):
status: bool
prompt: str
seed: int
system_prompt: str
message: str
def add_custom_field(self, key: str, value) -> None:
self.__setattr__(key, value)
class PromptExpander:
def __init__(self, model_name, task, is_vl=False, device=0, **kwargs):
self.model_name = model_name
self.task = task
self.is_vl = is_vl
self.device = device
def extend_with_img(self,
prompt,
system_prompt,
image=None,
seed=-1,
*args,
**kwargs):
pass
def extend(self, prompt, system_prompt, seed=-1, *args, **kwargs):
pass
def decide_system_prompt(self, tar_lang="zh", prompt=None):
assert self.task is not None
if "ti2v" in self.task:
if self.is_vl:
return DEFAULT_SYS_PROMPTS[self.task]["i2v"][tar_lang]
else:
return DEFAULT_SYS_PROMPTS[self.task]["t2v"][tar_lang]
if "i2v" in self.task and len(prompt) == 0:
return DEFAULT_SYS_PROMPTS[self.task]["empty"][tar_lang]
return DEFAULT_SYS_PROMPTS[self.task][tar_lang]
def __call__(self,
prompt,
system_prompt=None,
tar_lang="zh",
image=None,
seed=-1,
*args,
**kwargs):
if system_prompt is None:
system_prompt = self.decide_system_prompt(
tar_lang=tar_lang, prompt=prompt)
if seed < 0:
seed = random.randint(0, sys.maxsize)
if image is not None and self.is_vl:
return self.extend_with_img(
prompt, system_prompt, image=image, seed=seed, *args, **kwargs)
elif not self.is_vl:
return self.extend(prompt, system_prompt, seed, *args, **kwargs)
else:
raise NotImplementedError
class DashScopePromptExpander(PromptExpander):
def __init__(self,
api_key=None,
model_name=None,
task=None,
max_image_size=512 * 512,
retry_times=4,
is_vl=False,
**kwargs):
'''
Args:
api_key: The API key for Dash Scope authentication and access to related services.
model_name: Model name, 'qwen-plus' for extending prompts, 'qwen-vl-max' for extending prompt-images.
task: Task name. This is required to determine the default system prompt.
max_image_size: The maximum size of the image; unit unspecified (e.g., pixels, KB). Please specify the unit based on actual usage.
retry_times: Number of retry attempts in case of request failure.
is_vl: A flag indicating whether the task involves visual-language processing.
**kwargs: Additional keyword arguments that can be passed to the function or method.
'''
if model_name is None:
model_name = 'qwen-plus' if not is_vl else 'qwen-vl-max'
super().__init__(model_name, task, is_vl, **kwargs)
if api_key is not None:
dashscope.api_key = api_key
elif 'DASH_API_KEY' in os.environ and os.environ[
'DASH_API_KEY'] is not None:
dashscope.api_key = os.environ['DASH_API_KEY']
else:
raise ValueError("DASH_API_KEY is not set")
if 'DASH_API_URL' in os.environ and os.environ[
'DASH_API_URL'] is not None:
dashscope.base_http_api_url = os.environ['DASH_API_URL']
else:
dashscope.base_http_api_url = 'https://dashscope.aliyuncs.com/api/v1'
self.api_key = api_key
self.max_image_size = max_image_size
self.model = model_name
self.retry_times = retry_times
def extend(self, prompt, system_prompt, seed=-1, *args, **kwargs):
messages = [{
'role': 'system',
'content': system_prompt
}, {
'role': 'user',
'content': prompt
}]
exception = None
for _ in range(self.retry_times):
try:
response = dashscope.Generation.call(
self.model,
messages=messages,
seed=seed,
result_format='message', # set the result to be "message" format.
)
assert response.status_code == HTTPStatus.OK, response
expanded_prompt = response['output']['choices'][0]['message'][
'content']
return PromptOutput(
status=True,
prompt=expanded_prompt,
seed=seed,
system_prompt=system_prompt,
message=json.dumps(response, ensure_ascii=False))
except Exception as e:
exception = e
return PromptOutput(
status=False,
prompt=prompt,
seed=seed,
system_prompt=system_prompt,
message=str(exception))
def extend_with_img(self,
prompt,
system_prompt,
image: Union[Image.Image, str] = None,
seed=-1,
*args,
**kwargs):
if isinstance(image, str):
image = Image.open(image).convert('RGB')
w = image.width
h = image.height
area = min(w * h, self.max_image_size)
aspect_ratio = h / w
resized_h = round(math.sqrt(area * aspect_ratio))
resized_w = round(math.sqrt(area / aspect_ratio))
image = image.resize((resized_w, resized_h))
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as f:
image.save(f.name)
fname = f.name
image_path = f"file://{f.name}"
prompt = f"{prompt}"
messages = [
{
'role': 'system',
'content': [{
"text": system_prompt
}]
},
{
'role': 'user',
'content': [{
"text": prompt
}, {
"image": image_path
}]
},
]
response = None
result_prompt = prompt
exception = None
status = False
for _ in range(self.retry_times):
try:
response = dashscope.MultiModalConversation.call(
self.model,
messages=messages,
seed=seed,
result_format='message', # set the result to be "message" format.
)
assert response.status_code == HTTPStatus.OK, response
result_prompt = response['output']['choices'][0]['message'][
'content'][0]['text'].replace('\n', '\\n')
status = True
break
except Exception as e:
exception = e
result_prompt = result_prompt.replace('\n', '\\n')
os.remove(fname)
return PromptOutput(
status=status,
prompt=result_prompt,
seed=seed,
system_prompt=system_prompt,
message=str(exception) if not status else json.dumps(
response, ensure_ascii=False))
class QwenPromptExpander(PromptExpander):
model_dict = {
"QwenVL2.5_3B": "Qwen/Qwen2.5-VL-3B-Instruct",
"QwenVL2.5_7B": "Qwen/Qwen2.5-VL-7B-Instruct",
"Qwen2.5_3B": "Qwen/Qwen2.5-3B-Instruct",
"Qwen2.5_7B": "Qwen/Qwen2.5-7B-Instruct",
"Qwen2.5_14B": "Qwen/Qwen2.5-14B-Instruct",
}
def __init__(self,
model_name=None,
task=None,
device=0,
is_vl=False,
**kwargs):
'''
Args:
model_name: Use predefined model names such as 'QwenVL2.5_7B' and 'Qwen2.5_14B',
which are specific versions of the Qwen model. Alternatively, you can use the
local path to a downloaded model or the model name from Hugging Face."
Detailed Breakdown:
Predefined Model Names:
* 'QwenVL2.5_7B' and 'Qwen2.5_14B' are specific versions of the Qwen model.
Local Path:
* You can provide the path to a model that you have downloaded locally.
Hugging Face Model Name:
* You can also specify the model name from Hugging Face's model hub.
task: Task name. This is required to determine the default system prompt.
is_vl: A flag indicating whether the task involves visual-language processing.
**kwargs: Additional keyword arguments that can be passed to the function or method.
'''
if model_name is None:
model_name = 'Qwen2.5_14B' if not is_vl else 'QwenVL2.5_7B'
super().__init__(model_name, task, is_vl, device, **kwargs)
if (not os.path.exists(self.model_name)) and (self.model_name
in self.model_dict):
self.model_name = self.model_dict[self.model_name]
if self.is_vl:
# default: Load the model on the available device(s)
from transformers import (
AutoProcessor,
AutoTokenizer,
Qwen2_5_VLForConditionalGeneration,
)
try:
from .qwen_vl_utils import process_vision_info
except:
from qwen_vl_utils import process_vision_info
self.process_vision_info = process_vision_info
min_pixels = 256 * 28 * 28
max_pixels = 1280 * 28 * 28
self.processor = AutoProcessor.from_pretrained(
self.model_name,
min_pixels=min_pixels,
max_pixels=max_pixels,
use_fast=True)
self.model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
self.model_name,
torch_dtype=torch.bfloat16 if FLASH_VER == 2 else
torch.float16 if "AWQ" in self.model_name else "auto",
attn_implementation="flash_attention_2"
if FLASH_VER == 2 else None,
device_map="cpu")
else:
from transformers import AutoModelForCausalLM, AutoTokenizer
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
torch_dtype=torch.float16
if "AWQ" in self.model_name else "auto",
attn_implementation="flash_attention_2"
if FLASH_VER == 2 else None,
device_map="cpu")
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
def extend(self, prompt, system_prompt, seed=-1, *args, **kwargs):
self.model = self.model.to(self.device)
messages = [{
"role": "system",
"content": system_prompt
}, {
"role": "user",
"content": prompt
}]
text = self.tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True)
model_inputs = self.tokenizer([text],
return_tensors="pt").to(self.model.device)
generated_ids = self.model.generate(**model_inputs, max_new_tokens=512)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(
model_inputs.input_ids, generated_ids)
]
expanded_prompt = self.tokenizer.batch_decode(
generated_ids, skip_special_tokens=True)[0]
self.model = self.model.to("cpu")
return PromptOutput(
status=True,
prompt=expanded_prompt,
seed=seed,
system_prompt=system_prompt,
message=json.dumps({"content": expanded_prompt},
ensure_ascii=False))
def extend_with_img(self,
prompt,
system_prompt,
image: Union[Image.Image, str] = None,
seed=-1,
*args,
**kwargs):
self.model = self.model.to(self.device)
messages = [{
'role': 'system',
'content': [{
"type": "text",
"text": system_prompt
}]
}, {
"role":
"user",
"content": [
{
"type": "image",
"image": image,
},
{
"type": "text",
"text": prompt
},
],
}]
# Preparation for inference
text = self.processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = self.process_vision_info(messages)
inputs = self.processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to(self.device)
# Inference: Generation of the output
generated_ids = self.model.generate(**inputs, max_new_tokens=512)
generated_ids_trimmed = [
out_ids[len(in_ids):]
for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
expanded_prompt = self.processor.batch_decode(
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False)[0]
self.model = self.model.to("cpu")
return PromptOutput(
status=True,
prompt=expanded_prompt,
seed=seed,
system_prompt=system_prompt,
message=json.dumps({"content": expanded_prompt},
ensure_ascii=False))
if __name__ == "__main__":
logging.basicConfig(
level=logging.INFO,
format="[%(asctime)s] %(levelname)s: %(message)s",
handlers=[logging.StreamHandler(stream=sys.stdout)])
seed = 100
prompt = "夏日海滩度假风格,一只戴着墨镜的白色猫咪坐在冲浪板上。猫咪毛发蓬松,表情悠闲,直视镜头。背景是模糊的海滩景色,海水清澈,远处有绿色的山丘和蓝天白云。猫咪的姿态自然放松,仿佛在享受海风和阳光。近景特写,强调猫咪的细节和海滩的清新氛围。"
en_prompt = "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside."
image = "./examples/i2v_input.JPG"
def test(method,
prompt,
model_name,
task,
image=None,
en_prompt=None,
seed=None):
prompt_expander = method(
model_name=model_name, task=task, is_vl=image is not None)
result = prompt_expander(prompt, image=image, tar_lang="zh")
logging.info(f"zh prompt -> zh: {result.prompt}")
result = prompt_expander(prompt, image=image, tar_lang="en")
logging.info(f"zh prompt -> en: {result.prompt}")
if en_prompt is not None:
result = prompt_expander(en_prompt, image=image, tar_lang="zh")
logging.info(f"en prompt -> zh: {result.prompt}")
result = prompt_expander(en_prompt, image=image, tar_lang="en")
logging.info(f"en prompt -> en: {result.prompt}")
ds_model_name = None
ds_vl_model_name = None
qwen_model_name = None
qwen_vl_model_name = None
for task in ["t2v-A14B", "i2v-A14B", "ti2v-5B"]:
# test prompt extend
if "t2v" in task or "ti2v" in task:
# test dashscope api
logging.info(f"-" * 40)
logging.info(f"Testing {task} dashscope prompt extend")
test(
DashScopePromptExpander,
prompt,
ds_model_name,
task,
image=None,
en_prompt=en_prompt,
seed=seed)
# test qwen api
logging.info(f"-" * 40)
logging.info(f"Testing {task} qwen prompt extend")
test(
QwenPromptExpander,
prompt,
qwen_model_name,
task,
image=None,
en_prompt=en_prompt,
seed=seed)
# test prompt-image extend
if "i2v" in task:
# test dashscope api
logging.info(f"-" * 40)
logging.info(f"Testing {task} dashscope vl prompt extend")
test(
DashScopePromptExpander,
prompt,
ds_vl_model_name,
task,
image=image,
en_prompt=en_prompt,
seed=seed)
# test qwen api
logging.info(f"-" * 40)
logging.info(f"Testing {task} qwen vl prompt extend")
test(
QwenPromptExpander,
prompt,
qwen_vl_model_name,
task,
image=image,
en_prompt=en_prompt,
seed=seed)
# test empty prompt extend
if "i2v-A14B" in task:
# test dashscope api
logging.info(f"-" * 40)
logging.info(f"Testing {task} dashscope vl empty prompt extend")
test(
DashScopePromptExpander,
"",
ds_vl_model_name,
task,
image=image,
en_prompt=None,
seed=seed)
# test qwen api
logging.info(f"-" * 40)
logging.info(f"Testing {task} qwen vl empty prompt extend")
test(
QwenPromptExpander,
"",
qwen_vl_model_name,
task,
image=image,
en_prompt=None,
seed=seed)