framepack-i2v / app.py
ginipick's picture
Update app.py
17a13c7 verified
raw
history blame
66.3 kB
from diffusers_helper.hf_login import login
import os
import threading
import time
import requests
from requests.adapters import HTTPAdapter
from urllib3.util.retry import Retry
import json
os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))
# 영어/한국어 번역 딕셔너리
translations = {
"en": {
"title": "FramePack - Image to Video Generation",
"upload_image": "Upload Image",
"prompt": "Prompt",
"quick_prompts": "Quick Prompts",
"start_generation": "Generate",
"stop_generation": "Stop",
"use_teacache": "Use TeaCache",
"teacache_info": "Faster speed, but may result in slightly worse finger and hand generation.",
"negative_prompt": "Negative Prompt",
"seed": "Seed",
"video_length": "Video Length (max 5 seconds)",
"latent_window": "Latent Window Size",
"steps": "Inference Steps",
"steps_info": "Changing this value is not recommended.",
"cfg_scale": "CFG Scale",
"distilled_cfg": "Distilled CFG Scale",
"distilled_cfg_info": "Changing this value is not recommended.",
"cfg_rescale": "CFG Rescale",
"gpu_memory": "GPU Memory Preservation (GB) (larger means slower)",
"gpu_memory_info": "Set this to a larger value if you encounter OOM errors. Larger values cause slower speed.",
"next_latents": "Next Latents",
"generated_video": "Generated Video",
"sampling_note": "Note: Due to reversed sampling, ending actions will be generated before starting actions. If the starting action is not in the video, please wait, it will be generated later.",
"error_message": "Error",
"processing_error": "Processing error",
"network_error": "Network connection is unstable, model download timed out. Please try again later.",
"memory_error": "GPU memory insufficient, please try increasing GPU memory preservation value or reduce video length.",
"model_error": "Failed to load model, possibly due to network issues or high server load. Please try again later.",
"partial_video": "Processing error, but partial video has been generated",
"processing_interrupt": "Processing was interrupted, but partial video has been generated"
},
"ko": {
"title": "FramePack - 이미지에서 동영상 생성",
"upload_image": "이미지 업로드",
"prompt": "프롬프트",
"quick_prompts": "빠른 프롬프트 목록",
"start_generation": "생성 시작",
"stop_generation": "생성 중지",
"use_teacache": "TeaCache 사용",
"teacache_info": "더 빠른 속도를 제공하지만 손가락이나 손 생성 품질이 약간 떨어질 수 있습니다.",
"negative_prompt": "부정 프롬프트",
"seed": "랜덤 시드",
"video_length": "동영상 길이 (최대 5초)",
"latent_window": "잠재 윈도우 크기",
"steps": "추론 스텝 수",
"steps_info": "이 값을 변경하는 것은 권장되지 않습니다.",
"cfg_scale": "CFG 스케일",
"distilled_cfg": "증류된 CFG 스케일",
"distilled_cfg_info": "이 값을 변경하는 것은 권장되지 않습니다.",
"cfg_rescale": "CFG 재스케일",
"gpu_memory": "GPU 메모리 보존 (GB) (값이 클수록 속도가 느려짐)",
"gpu_memory_info": "OOM 오류가 발생하면 이 값을 더 크게 설정하십시오. 값이 클수록 속도가 느려집니다.",
"next_latents": "다음 잠재 변수",
"generated_video": "생성된 동영상",
"sampling_note": "주의: 역순 샘플링 때문에, 종료 동작이 시작 동작보다 먼저 생성됩니다. 시작 동작이 동영상에 나타나지 않으면 기다려 주십시오. 나중에 생성됩니다.",
"error_message": "오류 메시지",
"processing_error": "처리 중 오류 발생",
"network_error": "네트워크 연결이 불안정하여 모델 다운로드가 시간 초과되었습니다. 나중에 다시 시도해 주십시오.",
"memory_error": "GPU 메모리가 부족합니다. GPU 메모리 보존 값을 늘리거나 동영상 길이를 줄여보세요.",
"model_error": "모델 로드에 실패했습니다. 네트워크 문제 또는 서버 부하가 높을 수 있습니다. 나중에 다시 시도해 주십시오.",
"partial_video": "처리 중 오류가 발생했지만 일부 동영상이 생성되었습니다.",
"processing_interrupt": "처리 중 중단되었지만 일부 동영상이 생성되었습니다."
}
}
# 다국어 텍스트를 반환하는 함수
def get_translation(key, lang="en"):
if lang in translations and key in translations[lang]:
return translations[lang][key]
# 기본값(영어) 반환
return translations["en"].get(key, key)
# 디폴트 언어를 영어로 설정
current_language = "en"
# 언어 전환 함수
def switch_language():
global current_language
current_language = "ko" if current_language == "en" else "en"
return current_language
import gradio as gr
import torch
import traceback
import einops
import safetensors.torch as sf
import numpy as np
import math
# Spaces 환경 체크
IN_HF_SPACE = os.environ.get('SPACE_ID') is not None
# GPU 사용 여부 기록
GPU_AVAILABLE = False
GPU_INITIALIZED = False
last_update_time = time.time()
# Spaces 환경이라면, spaces 모듈 불러오기 시도
if IN_HF_SPACE:
try:
import spaces
print("Hugging Face Space 환경에서 실행 중, spaces 모듈을 불러왔습니다.")
# GPU 사용 가능 여부 확인
try:
GPU_AVAILABLE = torch.cuda.is_available()
print(f"GPU available: {GPU_AVAILABLE}")
if GPU_AVAILABLE:
print(f"GPU device name: {torch.cuda.get_device_name(0)}")
print(f"GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9} GB")
# 작은 테스트 연산으로 실제 GPU 동작 확인
test_tensor = torch.zeros(1, device='cuda')
test_tensor = test_tensor + 1
del test_tensor
print("GPU 테스트 연산 성공")
else:
print("경고: CUDA는 가능하다고 하나 실제 GPU 디바이스를 찾을 수 없습니다.")
except Exception as e:
GPU_AVAILABLE = False
print(f"GPU 확인 중 오류 발생: {e}")
print("CPU 모드로 진행합니다.")
except ImportError:
print("spaces 모듈을 불러올 수 없습니다. Spaces 환경이 아닐 수 있습니다.")
GPU_AVAILABLE = torch.cuda.is_available()
from PIL import Image
from diffusers import AutoencoderKLHunyuanVideo
from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer
from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete, IN_HF_SPACE as MEMORY_IN_HF_SPACE
from diffusers_helper.thread_utils import AsyncStream, async_run
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
from transformers import SiglipImageProcessor, SiglipVisionModel
from diffusers_helper.clip_vision import hf_clip_vision_encode
from diffusers_helper.bucket_tools import find_nearest_bucket
outputs_folder = './outputs/'
os.makedirs(outputs_folder, exist_ok=True)
# Spaces 환경이 아닐 경우, VRAM 확인
if not IN_HF_SPACE:
try:
if torch.cuda.is_available():
free_mem_gb = get_cuda_free_memory_gb(gpu)
print(f'남은 VRAM: {free_mem_gb} GB')
else:
free_mem_gb = 6.0 # 기본값
print("CUDA를 사용할 수 없으므로 기본 메모리 설정을 사용합니다.")
except Exception as e:
free_mem_gb = 6.0
print(f"CUDA 메모리 확인 중 오류 발생: {e} / 기본값 사용")
high_vram = free_mem_gb > 60
print(f'high_vram 모드: {high_vram}')
else:
# Spaces 환경에서 기본값 설정
print("Spaces 환경에서 기본 메모리 설정 사용")
try:
if GPU_AVAILABLE:
free_mem_gb = torch.cuda.get_device_properties(0).total_memory / 1e9 * 0.9
high_vram = free_mem_gb > 10 # 조금 더 보수적으로 설정
else:
free_mem_gb = 6.0
high_vram = False
except Exception as e:
print(f"GPU 메모리 확인 중 오류: {e}")
free_mem_gb = 6.0
high_vram = False
print(f'GPU 메모리: {free_mem_gb:.2f} GB, High-VRAM 모드: {high_vram}')
# 전역 모델 참조
models = {}
cpu_fallback_mode = not GPU_AVAILABLE # GPU가 불가능하면 CPU 모드로
def load_models():
global models, cpu_fallback_mode, GPU_INITIALIZED
if GPU_INITIALIZED:
print("모델이 이미 로드되었습니다. 다시 로드하지 않습니다.")
return models
print("모델 로드를 시작합니다...")
try:
device = 'cuda' if GPU_AVAILABLE and not cpu_fallback_mode else 'cpu'
model_device = 'cpu' # 우선 CPU에 로드
# 기본적으로 GPU면 float16, CPU면 float32
dtype = torch.float16 if GPU_AVAILABLE else torch.float32
transformer_dtype = torch.bfloat16 if GPU_AVAILABLE else torch.float32
print(f"사용 디바이스: {device}, vae/text encoder dtype: {dtype}, transformer dtype: {transformer_dtype}")
try:
text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=dtype).to(model_device)
text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=dtype).to(model_device)
tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=dtype).to(model_device)
feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=dtype).to(model_device)
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=transformer_dtype).to(model_device)
print("모든 모델을 성공적으로 로드했습니다.")
except Exception as e:
print(f"모델 로드 중 오류 발생: {e}")
print("정밀도를 낮춰 다시 로드합니다...")
dtype = torch.float32
transformer_dtype = torch.float32
cpu_fallback_mode = True
text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=dtype).to('cpu')
text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=dtype).to('cpu')
tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=dtype).to('cpu')
feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=dtype).to('cpu')
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=transformer_dtype).to('cpu')
print("CPU 모드로 모델 로드 성공")
vae.eval()
text_encoder.eval()
text_encoder_2.eval()
image_encoder.eval()
transformer.eval()
if not high_vram or cpu_fallback_mode:
vae.enable_slicing()
vae.enable_tiling()
transformer.high_quality_fp32_output_for_inference = True
print('transformer.high_quality_fp32_output_for_inference = True')
if not cpu_fallback_mode:
transformer.to(dtype=transformer_dtype)
vae.to(dtype=dtype)
image_encoder.to(dtype=dtype)
text_encoder.to(dtype=dtype)
text_encoder_2.to(dtype=dtype)
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
text_encoder_2.requires_grad_(False)
image_encoder.requires_grad_(False)
transformer.requires_grad_(False)
if torch.cuda.is_available() and not cpu_fallback_mode:
try:
if not high_vram:
# 메모리 최적화
DynamicSwapInstaller.install_model(transformer, device=device)
DynamicSwapInstaller.install_model(text_encoder, device=device)
else:
text_encoder.to(device)
text_encoder_2.to(device)
image_encoder.to(device)
vae.to(device)
transformer.to(device)
print(f"모델을 {device}로 이동 완료")
except Exception as e:
print(f"{device}로 모델 이동 중 오류 발생: {e}")
print("CPU 모드로 전환")
cpu_fallback_mode = True
models_local = {
'text_encoder': text_encoder,
'text_encoder_2': text_encoder_2,
'tokenizer': tokenizer,
'tokenizer_2': tokenizer_2,
'vae': vae,
'feature_extractor': feature_extractor,
'image_encoder': image_encoder,
'transformer': transformer
}
GPU_INITIALIZED = True
models.update(models_local)
print(f"모델 로드 완료. 현재 실행 모드: {'CPU' if cpu_fallback_mode else 'GPU'}")
return models
except Exception as e:
print(f"모델 로드 중 예상치 못한 오류가 발생: {e}")
traceback.print_exc()
error_info = {
"error": str(e),
"traceback": traceback.format_exc(),
"cuda_available": torch.cuda.is_available(),
"device": "cpu" if cpu_fallback_mode else "cuda",
}
try:
with open(os.path.join(outputs_folder, "error_log.txt"), "w") as f:
f.write(str(error_info))
except:
pass
cpu_fallback_mode = True
return {}
if IN_HF_SPACE and 'spaces' in globals() and GPU_AVAILABLE:
try:
@spaces.GPU
def initialize_models():
"""@spaces.GPU 환경에서 모델을 초기화"""
global GPU_INITIALIZED
try:
result = load_models()
GPU_INITIALIZED = True
return result
except Exception as e:
print(f"@spaces.GPU 모델 초기화 중 오류: {e}")
traceback.print_exc()
global cpu_fallback_mode
cpu_fallback_mode = True
return load_models()
except Exception as e:
print(f"spaces.GPU 데코레이터 생성 중 오류: {e}")
def initialize_models():
return load_models()
def get_models():
"""모델을 불러오거나 이미 불러왔다면 반환"""
global models, GPU_INITIALIZED
model_loading_key = "__model_loading__"
if not models:
if model_loading_key in globals():
print("모델 로딩 중입니다. 대기 중...")
import time
start_wait = time.time()
while not models and model_loading_key in globals():
time.sleep(0.5)
if time.time() - start_wait > 60:
print("모델 로딩 대기 시간 초과")
break
if models:
return models
try:
globals()[model_loading_key] = True
if IN_HF_SPACE and 'spaces' in globals() and GPU_AVAILABLE and not cpu_fallback_mode:
try:
print("GPU 데코레이터(@spaces.GPU)로 모델 로딩 시도")
models_local = initialize_models()
models.update(models_local)
except Exception as e:
print(f"GPU 데코레이터 로딩 실패: {e} / 직접 로딩 시도")
models_local = load_models()
models.update(models_local)
else:
print("모델 직접 로딩 시도")
models_local = load_models()
models.update(models_local)
except Exception as e:
print(f"모델 로드 중 오류: {e}")
traceback.print_exc()
models.clear()
finally:
if model_loading_key in globals():
del globals()[model_loading_key]
return models
stream = AsyncStream()
@torch.no_grad()
def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache):
global last_update_time
last_update_time = time.time()
total_second_length = min(total_second_length, 5.0)
try:
models_local = get_models()
if not models_local:
error_msg = "모델 로드에 실패했습니다. 로그를 확인하세요."
print(error_msg)
stream.output_queue.push(('error', error_msg))
stream.output_queue.push(('end', None))
return
text_encoder = models_local['text_encoder']
text_encoder_2 = models_local['text_encoder_2']
tokenizer = models_local['tokenizer']
tokenizer_2 = models_local['tokenizer_2']
vae = models_local['vae']
feature_extractor = models_local['feature_extractor']
image_encoder = models_local['image_encoder']
transformer = models_local['transformer']
except Exception as e:
error_msg = f"모델 가져오기 실패: {e}"
print(error_msg)
traceback.print_exc()
stream.output_queue.push(('error', error_msg))
stream.output_queue.push(('end', None))
return
device = 'cuda' if GPU_AVAILABLE and not cpu_fallback_mode else 'cpu'
print(f"추론 디바이스: {device}")
if cpu_fallback_mode:
print("CPU 모드에서 일부 파라미터를 축소합니다.")
latent_window_size = min(latent_window_size, 5)
steps = min(steps, 15)
total_second_length = min(total_second_length, 2.0)
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
total_latent_sections = int(max(round(total_latent_sections), 1))
job_id = generate_timestamp()
last_output_filename = None
history_pixels = None
history_latents = None
total_generated_latent_frames = 0
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
try:
if not high_vram and not cpu_fallback_mode:
try:
unload_complete_models(
text_encoder, text_encoder_2, image_encoder, vae, transformer
)
except Exception as e:
print(f"모델 언로드 중 오류: {e}")
# 텍스트 인코딩
last_update_time = time.time()
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
try:
if not high_vram and not cpu_fallback_mode:
fake_diffusers_current_device(text_encoder, device)
load_model_as_complete(text_encoder_2, target_device=device)
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
if cfg == 1:
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
else:
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
except Exception as e:
error_msg = f"텍스트 인코딩 오류: {e}"
print(error_msg)
traceback.print_exc()
stream.output_queue.push(('error', error_msg))
stream.output_queue.push(('end', None))
return
# 입력 이미지 처리
last_update_time = time.time()
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
try:
H, W, C = input_image.shape
height, width = find_nearest_bucket(H, W, resolution=640)
if cpu_fallback_mode:
height = min(height, 320)
width = min(width, 320)
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
except Exception as e:
error_msg = f"이미지 전처리 오류: {e}"
print(error_msg)
traceback.print_exc()
stream.output_queue.push(('error', error_msg))
stream.output_queue.push(('end', None))
return
# VAE 인코딩
last_update_time = time.time()
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
try:
if not high_vram and not cpu_fallback_mode:
load_model_as_complete(vae, target_device=device)
start_latent = vae_encode(input_image_pt, vae)
except Exception as e:
error_msg = f"VAE 인코딩 오류: {e}"
print(error_msg)
traceback.print_exc()
stream.output_queue.push(('error', error_msg))
stream.output_queue.push(('end', None))
return
# CLIP Vision 인코딩
last_update_time = time.time()
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
try:
if not high_vram and not cpu_fallback_mode:
load_model_as_complete(image_encoder, target_device=device)
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
except Exception as e:
error_msg = f"CLIP Vision 인코딩 오류: {e}"
print(error_msg)
traceback.print_exc()
stream.output_queue.push(('error', error_msg))
stream.output_queue.push(('end', None))
return
# dtype 변환
try:
llama_vec = llama_vec.to(transformer.dtype)
llama_vec_n = llama_vec_n.to(transformer.dtype)
clip_l_pooler = clip_l_pooler.to(transformer.dtype)
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
except Exception as e:
error_msg = f"dtype 변환 오류: {e}"
print(error_msg)
traceback.print_exc()
stream.output_queue.push(('error', error_msg))
stream.output_queue.push(('end', None))
return
# 샘플링 진행
last_update_time = time.time()
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
rnd = torch.Generator("cpu").manual_seed(seed)
num_frames = latent_window_size * 4 - 3
try:
history_latents = torch.zeros(size=(1, 16, 1 + 2 + 16, height // 8, width // 8), dtype=torch.float32).cpu()
history_pixels = None
total_generated_latent_frames = 0
except Exception as e:
error_msg = f"히스토리 상태 초기화 오류: {e}"
print(error_msg)
traceback.print_exc()
stream.output_queue.push(('error', error_msg))
stream.output_queue.push(('end', None))
return
latent_paddings = reversed(range(total_latent_sections))
if total_latent_sections > 4:
latent_paddings = [3] + [2]*(total_latent_sections - 3) + [1, 0]
for latent_padding in latent_paddings:
last_update_time = time.time()
is_last_section = latent_padding == 0
latent_padding_size = latent_padding * latent_window_size
if stream.input_queue.top() == 'end':
# 중단 신호 수신 시 부분 결과 반환
if history_pixels is not None and total_generated_latent_frames > 0:
try:
output_filename = os.path.join(outputs_folder, f'{job_id}_final_{total_generated_latent_frames}.mp4')
save_bcthw_as_mp4(history_pixels, output_filename, fps=30)
stream.output_queue.push(('file', output_filename))
except Exception as e:
print(f"마지막 비디오 저장 오류: {e}")
stream.output_queue.push(('end', None))
return
print(f'latent_padding_size = {latent_padding_size}, is_last_section = {is_last_section}')
try:
indices = torch.arange(0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])).unsqueeze(0)
clean_latent_indices_pre, blank_indices, latent_indices, clean_latent_indices_post, clean_latent_2x_indices, clean_latent_4x_indices = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1)
clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)
clean_latents_pre = start_latent.to(history_latents)
clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, :1 + 2 + 16, :, :].split([1, 2, 16], dim=2)
clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2)
except Exception as e:
error_msg = f"샘플링 데이터 준비 오류: {e}"
print(error_msg)
traceback.print_exc()
if last_output_filename:
stream.output_queue.push(('file', last_output_filename))
continue
if not high_vram and not cpu_fallback_mode:
try:
unload_complete_models()
move_model_to_device_with_memory_preservation(transformer, target_device=device, preserved_memory_gb=gpu_memory_preservation)
except Exception as e:
print(f"transformer GPU 이동 오류: {e}")
if use_teacache and not cpu_fallback_mode:
try:
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
except Exception as e:
print(f"teacache 초기화 오류: {e}")
transformer.initialize_teacache(enable_teacache=False)
else:
transformer.initialize_teacache(enable_teacache=False)
def callback(d):
global last_update_time
last_update_time = time.time()
try:
if stream.input_queue.top() == 'end':
stream.output_queue.push(('end', None))
raise KeyboardInterrupt('사용자 중단 요청')
preview = d['denoised']
preview = vae_decode_fake(preview)
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
current_step = d['i'] + 1
percentage = int(100.0 * current_step / steps)
hint = f'Sampling {current_step}/{steps}'
desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-30).'
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
except KeyboardInterrupt:
raise
except Exception as e:
print(f"콜백 중 오류: {e}")
return
try:
sampling_start_time = time.time()
print(f"샘플링 시작, device: {device}, dtype: {transformer.dtype}, TeaCache: {use_teacache and not cpu_fallback_mode}")
try:
generated_latents = sample_hunyuan(
transformer=transformer,
sampler='unipc',
width=width,
height=height,
frames=num_frames,
real_guidance_scale=cfg,
distilled_guidance_scale=gs,
guidance_rescale=rs,
num_inference_steps=steps,
generator=rnd,
prompt_embeds=llama_vec,
prompt_embeds_mask=llama_attention_mask,
prompt_poolers=clip_l_pooler,
negative_prompt_embeds=llama_vec_n,
negative_prompt_embeds_mask=llama_attention_mask_n,
negative_prompt_poolers=clip_l_pooler_n,
device=device,
dtype=transformer.dtype,
image_embeddings=image_encoder_last_hidden_state,
latent_indices=latent_indices,
clean_latents=clean_latents,
clean_latent_indices=clean_latent_indices,
clean_latents_2x=clean_latents_2x,
clean_latent_2x_indices=clean_latent_2x_indices,
clean_latents_4x=clean_latents_4x,
clean_latent_4x_indices=clean_latent_4x_indices,
callback=callback,
)
print(f"샘플링 완료. 소요 시간: {time.time() - sampling_start_time:.2f} 초")
except KeyboardInterrupt as e:
print(f"사용자 중단: {e}")
if last_output_filename:
stream.output_queue.push(('file', last_output_filename))
error_msg = "사용자에 의해 중단되었지만, 일부 비디오가 생성되었습니다."
else:
error_msg = "사용자에 의해 중단되었습니다. 비디오가 생성되지 않았습니다."
stream.output_queue.push(('error', error_msg))
stream.output_queue.push(('end', None))
return
except Exception as e:
print(f"샘플링 중 오류: {e}")
traceback.print_exc()
if last_output_filename:
stream.output_queue.push(('file', last_output_filename))
error_msg = f"샘플링 중 오류(일부 비디오 생성됨): {e}"
stream.output_queue.push(('error', error_msg))
else:
error_msg = f"샘플링 중 오류: {e}"
stream.output_queue.push(('error', error_msg))
stream.output_queue.push(('end', None))
return
try:
if is_last_section:
generated_latents = torch.cat([start_latent.to(generated_latents), generated_latents], dim=2)
total_generated_latent_frames += int(generated_latents.shape[2])
history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)
except Exception as e:
error_msg = f"생성된 잠재 변수 처리 오류: {e}"
print(error_msg)
traceback.print_exc()
if last_output_filename:
stream.output_queue.push(('file', last_output_filename))
stream.output_queue.push(('error', error_msg))
stream.output_queue.push(('end', None))
return
if not high_vram and not cpu_fallback_mode:
try:
offload_model_from_device_for_memory_preservation(transformer, target_device=device, preserved_memory_gb=8)
load_model_as_complete(vae, target_device=device)
except Exception as e:
print(f"모델 메모리 관리 오류: {e}")
try:
real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :]
except Exception as e:
error_msg = f"히스토리 잠재 변수 처리 오류: {e}"
print(error_msg)
if last_output_filename:
stream.output_queue.push(('file', last_output_filename))
continue
try:
vae_start_time = time.time()
print(f"VAE 디코딩 시작, 잠재 변수 크기: {real_history_latents.shape}")
if history_pixels is None:
history_pixels = vae_decode(real_history_latents, vae).cpu()
else:
section_latent_frames = (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2)
overlapped_frames = latent_window_size * 4 - 3
current_pixels = vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu()
history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)
print(f"VAE 디코딩 완료, 소요 시간: {time.time() - vae_start_time:.2f} 초")
if not high_vram and not cpu_fallback_mode:
try:
unload_complete_models()
except Exception as e:
print(f"모델 언로드 중 오류: {e}")
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
save_start_time = time.time()
save_bcthw_as_mp4(history_pixels, output_filename, fps=30)
print(f"비디오 저장 완료, 소요 시간: {time.time() - save_start_time:.2f} 초")
print(f'디코딩 완료. 현재 latent 크기: {real_history_latents.shape}, pixel 크기: {history_pixels.shape}')
last_output_filename = output_filename
stream.output_queue.push(('file', output_filename))
except Exception as e:
print(f"비디오 디코딩/저장 중 오류: {e}")
traceback.print_exc()
if last_output_filename:
stream.output_queue.push(('file', last_output_filename))
error_msg = f"비디오 디코딩/저장 오류: {e}"
stream.output_queue.push(('error', error_msg))
continue
if is_last_section:
break
except Exception as e:
print(f"처리 중 오류 발생: {e} (type: {type(e)})")
traceback.print_exc()
if isinstance(e, KeyboardInterrupt):
print("KeyboardInterrupt 발생")
if not high_vram and not cpu_fallback_mode:
try:
unload_complete_models(
text_encoder, text_encoder_2, image_encoder, vae, transformer
)
except Exception as unload_error:
print(f"언로드 오류: {unload_error}")
if last_output_filename:
stream.output_queue.push(('file', last_output_filename))
error_msg = f"처리 중 오류: {e}"
stream.output_queue.push(('error', error_msg))
print("worker 함수 종료, 'end' 신호 전송")
stream.output_queue.push(('end', None))
return
if IN_HF_SPACE and 'spaces' in globals():
@spaces.GPU
def process_with_gpu(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache):
global stream
assert input_image is not None, 'No input image!'
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
try:
stream = AsyncStream()
async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache)
output_filename = None
prev_output_filename = None
error_message = None
while True:
try:
flag, data = stream.output_queue.next()
if flag == 'file':
output_filename = data
prev_output_filename = output_filename
yield output_filename, gr.update(), gr.update(), '', gr.update(interactive=False), gr.update(interactive=True)
if flag == 'progress':
preview, desc, html = data
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
if flag == 'error':
error_message = data
print(f"오류 메시지 수신: {error_message}")
if flag == 'end':
if output_filename is None and prev_output_filename is not None:
output_filename = prev_output_filename
if error_message:
error_html = create_error_html(error_message)
yield output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
else:
yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
break
except Exception as e:
print(f"출력 처리 중 오류: {e}")
current_time = time.time()
if current_time - last_update_time > 60:
print(f"처리가 {current_time - last_update_time:.1f}초 동안 정지됨. 타임아웃으로 간주.")
if prev_output_filename:
error_html = create_error_html("처리 시간이 초과되었지만 일부 동영상이 생성되었습니다.", is_timeout=True)
yield prev_output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
else:
error_html = create_error_html(f"처리 시간 초과: {e}", is_timeout=True)
yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
break
except Exception as e:
print(f"프로세스 시작 오류: {e}")
traceback.print_exc()
error_msg = str(e)
error_html = create_error_html(error_msg)
yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
process = process_with_gpu
else:
def process(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache):
global stream
assert input_image is not None, 'No input image!'
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
try:
stream = AsyncStream()
async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache)
output_filename = None
prev_output_filename = None
error_message = None
while True:
try:
flag, data = stream.output_queue.next()
if flag == 'file':
output_filename = data
prev_output_filename = output_filename
yield output_filename, gr.update(), gr.update(), '', gr.update(interactive=False), gr.update(interactive=True)
if flag == 'progress':
preview, desc, html = data
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
if flag == 'error':
error_message = data
print(f"오류 메시지 수신: {error_message}")
if flag == 'end':
if output_filename is None and prev_output_filename is not None:
output_filename = prev_output_filename
if error_message:
error_html = create_error_html(error_message)
yield output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
else:
yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
break
except Exception as e:
print(f"출력 처리 중 오류: {e}")
current_time = time.time()
if current_time - last_update_time > 60:
print(f"{current_time - last_update_time:.1f}초 동안 진행이 없어 타임아웃으로 간주합니다.")
if prev_output_filename:
error_html = create_error_html("처리 시간이 초과되었지만 일부 동영상이 생성되었습니다.", is_timeout=True)
yield prev_output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
else:
error_html = create_error_html(f"처리 시간 초과: {e}", is_timeout=True)
yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
break
except Exception as e:
print(f"프로세스 시작 오류: {e}")
traceback.print_exc()
error_msg = str(e)
error_html = create_error_html(error_msg)
yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
def end_process():
print("사용자가 중지 버튼을 눌렀습니다. 종료 신호를 보냅니다...")
if 'stream' in globals() and stream is not None:
try:
current_top = stream.input_queue.top()
print(f"현재 입력 큐 top: {current_top}")
except Exception as e:
print(f"입력 큐 확인 오류: {e}")
try:
stream.input_queue.push('end')
print("end 신호 전송 완료")
try:
current_top_after = stream.input_queue.top()
print(f"신호 전송 후 입력 큐 top: {current_top_after}")
except Exception as e:
print(f"신호 전송 후 큐 상태 확인 오류: {e}")
except Exception as e:
print(f"end 신호 전송 오류: {e}")
else:
print("stream이 초기화되지 않아 종료 신호를 보낼 수 없습니다.")
return None
quick_prompts = [
'The girl dances gracefully, with clear movements, full of charm.',
'A character doing some simple body movements.',
]
quick_prompts = [[x] for x in quick_prompts]
def make_custom_css():
progress_bar_css = make_progress_bar_css()
responsive_css = """
/* progress_bar_css로부터 불러온 기본 설정 + 추가 */
#app-container {
max-width: 100%;
margin: 0 auto;
}
#language-toggle {
position: fixed;
top: 10px;
right: 10px;
z-index: 1000;
background-color: rgba(0, 0, 0, 0.7);
color: white;
border: none;
border-radius: 4px;
padding: 5px 10px;
cursor: pointer;
font-size: 14px;
}
h1 {
font-size: 2rem;
text-align: center;
margin-bottom: 1rem;
}
.start-btn, .stop-btn {
min-height: 45px;
font-size: 1rem;
}
@media (max-width: 768px) {
h1 {
font-size: 1.5rem;
margin-bottom: 0.5rem;
}
.mobile-full-width {
flex-direction: column !important;
}
.mobile-full-width > .gr-block {
min-width: 100% !important;
flex-grow: 1;
}
.video-container {
height: auto !important;
}
.button-container button {
min-height: 50px;
font-size: 1rem;
touch-action: manipulation;
}
.slider-container input[type="range"] {
height: 30px;
}
}
@media (min-width: 769px) and (max-width: 1024px) {
.tablet-adjust {
width: 48% !important;
}
}
@media (prefers-color-scheme: dark) {
.dark-mode-text {
color: #f0f0f0;
}
.dark-mode-bg {
background-color: #2a2a2a;
}
}
button, input, select, textarea {
font-size: 16px;
}
button, .interactive-element {
min-height: 44px;
min-width: 44px;
}
.high-contrast {
color: #fff;
background-color: #000;
}
.progress-container {
margin-top: 10px;
margin-bottom: 10px;
}
#error-message {
color: #ff4444;
font-weight: bold;
padding: 10px;
border-radius: 4px;
margin-top: 10px;
}
.error-message {
background-color: rgba(255, 0, 0, 0.1);
padding: 10px;
border-radius: 4px;
margin-top: 10px;
border: 1px solid #ffcccc;
}
.error-msg-en, .error-msg-ko {
font-weight: bold;
}
.error-icon {
color: #ff4444;
font-size: 18px;
margin-right: 8px;
}
#error-message:empty {
background-color: transparent;
border: none;
padding: 0;
margin: 0;
}
.error {
display: none !important;
}
"""
return progress_bar_css + responsive_css
css = make_custom_css()
block = gr.Blocks(css=css).queue()
with block:
gr.HTML("""
<div id="app-container">
<button id="language-toggle" onclick="toggleLanguage()">한국어 / English</button>
</div>
<script>
window.currentLang = "en";
function toggleLanguage() {
window.currentLang = (window.currentLang === "en") ? "ko" : "en";
const elements = document.querySelectorAll('[data-i18n]');
elements.forEach(el => {
const key = el.getAttribute('data-i18n');
const translations = {
"en": {
"title": "FramePack - Image to Video Generation",
"upload_image": "Upload Image",
"prompt": "Prompt",
"quick_prompts": "Quick Prompts",
"start_generation": "Generate",
"stop_generation": "Stop",
"use_teacache": "Use TeaCache",
"teacache_info": "Faster speed, but may result in slightly worse finger and hand generation.",
"negative_prompt": "Negative Prompt",
"seed": "Seed",
"video_length": "Video Length (max 5 seconds)",
"latent_window": "Latent Window Size",
"steps": "Inference Steps",
"steps_info": "Changing this value is not recommended.",
"cfg_scale": "CFG Scale",
"distilled_cfg": "Distilled CFG Scale",
"distilled_cfg_info": "Changing this value is not recommended.",
"cfg_rescale": "CFG Rescale",
"gpu_memory": "GPU Memory Preservation (GB) (larger means slower)",
"gpu_memory_info": "Set this to a larger value if you encounter OOM errors. Larger values cause slower speed.",
"next_latents": "Next Latents",
"generated_video": "Generated Video",
"sampling_note": "Note: Due to reversed sampling, ending actions will be generated before starting actions. If the starting action is not in the video, please wait, it will be generated later.",
"error_message": "Error"
},
"ko": {
"title": "FramePack - 이미지에서 동영상 생성",
"upload_image": "이미지 업로드",
"prompt": "프롬프트",
"quick_prompts": "빠른 프롬프트 목록",
"start_generation": "생성 시작",
"stop_generation": "생성 중지",
"use_teacache": "TeaCache 사용",
"teacache_info": "더 빠른 속도를 제공하지만 손가락이나 손 생성 품질이 약간 떨어질 수 있습니다.",
"negative_prompt": "부정 프롬프트",
"seed": "랜덤 시드",
"video_length": "동영상 길이 (최대 5초)",
"latent_window": "잠재 윈도우 크기",
"steps": "추론 스텝 수",
"steps_info": "이 값을 변경하는 것은 권장되지 않습니다.",
"cfg_scale": "CFG 스케일",
"distilled_cfg": "증류된 CFG 스케일",
"distilled_cfg_info": "이 값을 변경하는 것은 권장되지 않습니다.",
"cfg_rescale": "CFG 재스케일",
"gpu_memory": "GPU 메모리 보존 (GB) (값이 클수록 속도가 느려짐)",
"gpu_memory_info": "OOM 오류가 발생하면 이 값을 더 크게 설정하십시오. 값이 클수록 속도가 느려집니다.",
"next_latents": "다음 잠재 변수",
"generated_video": "생성된 동영상",
"sampling_note": "주의: 역순 샘플링 때문에, 종료 동작이 시작 동작보다 먼저 생성됩니다. 시작 동작이 나타나지 않으면 기다려 주십시오.",
"error_message": "오류 메시지"
}
};
if (translations[window.currentLang] && translations[window.currentLang][key]) {
if (el.tagName === 'BUTTON') {
el.textContent = translations[window.currentLang][key];
} else if (el.tagName === 'LABEL') {
el.textContent = translations[window.currentLang][key];
} else {
el.innerHTML = translations[window.currentLang][key];
}
}
});
// bilingual-label 처리
document.querySelectorAll('.bilingual-label').forEach(el => {
const enText = el.getAttribute('data-en');
const koText = el.getAttribute('data-ko');
el.textContent = (window.currentLang === 'en') ? enText : koText;
});
// data-lang 처리
document.querySelectorAll('[data-lang]').forEach(el => {
el.style.display = (el.getAttribute('data-lang') === window.currentLang) ? 'block' : 'none';
});
}
document.addEventListener('DOMContentLoaded', function() {
setTimeout(() => {
// 매핑
const labelMap = {
"Upload Image": "upload_image",
"이미지 업로드": "upload_image",
"Prompt": "prompt",
"프롬프트": "prompt",
"Quick Prompts": "quick_prompts",
"빠른 프롬프트 목록": "quick_prompts",
"Generate": "start_generation",
"생성 시작": "start_generation",
"Stop": "stop_generation",
"생성 중지": "stop_generation"
};
document.querySelectorAll('label, span, button').forEach(el => {
const text = el.textContent.trim();
if (labelMap[text]) {
el.setAttribute('data-i18n', labelMap[text]);
}
});
const titleEl = document.querySelector('h1');
if (titleEl) titleEl.setAttribute('data-i18n', 'title');
toggleLanguage();
}, 1000);
});
</script>
""")
gr.HTML("<h1 data-i18n='title'>FramePack - Image to Video Generation</h1>")
with gr.Row(elem_classes="mobile-full-width"):
with gr.Column(scale=1, elem_classes="mobile-full-width"):
input_image = gr.Image(
sources='upload',
type="numpy",
label="Upload Image",
elem_id="input-image",
height=320
)
prompt = gr.Textbox(
label="Prompt",
value='',
elem_id="prompt-input"
)
example_quick_prompts = gr.Dataset(
samples=quick_prompts,
label='Quick Prompts',
samples_per_page=1000,
components=[prompt]
)
example_quick_prompts.click(
lambda x: x[0],
inputs=[example_quick_prompts],
outputs=prompt,
show_progress=False,
queue=False
)
with gr.Row(elem_classes="button-container"):
start_button = gr.Button(
value="Generate",
elem_classes="start-btn",
elem_id="start-button",
variant="primary"
)
end_button = gr.Button(
value="Stop",
elem_classes="stop-btn",
elem_id="stop-button",
interactive=False
)
with gr.Group():
use_teacache = gr.Checkbox(
label='Use TeaCache',
value=True,
info='Faster speed, but may result in slightly worse finger and hand generation.'
)
n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=False)
seed = gr.Number(
label="Seed",
value=31337,
precision=0
)
with gr.Group(elem_classes="slider-container"):
total_second_length = gr.Slider(
label="Video Length (max 5 seconds)",
minimum=1,
maximum=5,
value=5,
step=0.1
)
latent_window_size = gr.Slider(
label="Latent Window Size",
minimum=1,
maximum=33,
value=9,
step=1,
visible=False
)
steps = gr.Slider(
label="Inference Steps",
minimum=1,
maximum=100,
value=25,
step=1,
info='Changing this value is not recommended.'
)
cfg = gr.Slider(
label="CFG Scale",
minimum=1.0,
maximum=32.0,
value=1.0,
step=0.01,
visible=False
)
gs = gr.Slider(
label="Distilled CFG Scale",
minimum=1.0,
maximum=32.0,
value=10.0,
step=0.01,
info='Changing this value is not recommended.'
)
rs = gr.Slider(
label="CFG Rescale",
minimum=0.0,
maximum=1.0,
value=0.0,
step=0.01,
visible=False
)
gpu_memory_preservation = gr.Slider(
label="GPU Memory (GB)",
minimum=6,
maximum=128,
value=6,
step=0.1,
info="Set this to a larger value if you encounter OOM errors. Larger values cause slower speed."
)
with gr.Column(scale=1, elem_classes="mobile-full-width"):
preview_image = gr.Image(
label="Preview",
height=200,
visible=False,
elem_classes="preview-container"
)
result_video = gr.Video(
label="Generated Video",
autoplay=True,
show_share_button=True,
height=512,
loop=True,
elem_classes="video-container",
elem_id="result-video"
)
gr.HTML("<div data-i18n='sampling_note'>Note: Due to reversed sampling, ending actions will be generated before starting actions.</div>")
with gr.Group(elem_classes="progress-container"):
progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
progress_bar = gr.HTML('', elem_classes='no-generating-animation')
error_message = gr.HTML('', elem_id='error-message', visible=True)
ips = [input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache]
start_button.click(fn=process, inputs=ips, outputs=[
result_video, preview_image, progress_desc, progress_bar, start_button, end_button
])
end_button.click(fn=end_process)
block.launch()
def create_error_html(error_msg, is_timeout=False):
en_msg = ""
ko_msg = ""
if is_timeout:
if "부분" in error_msg or "partial" in error_msg:
en_msg = "Processing timed out, but partial video has been generated."
ko_msg = "처리 시간이 초과되었지만 일부 동영상이 생성되었습니다."
else:
en_msg = f"Processing timed out: {error_msg}"
ko_msg = f"처리 시간 초과: {error_msg}"
elif "모델 로드" in error_msg:
en_msg = "Failed to load models. Possibly heavy traffic or GPU problem."
ko_msg = "모델 로드에 실패했습니다. 과도한 트래픽 또는 GPU 문제일 수 있습니다."
elif "GPU" in error_msg or "CUDA" in error_msg or "memory" in error_msg or "메모리" in error_msg:
en_msg = "GPU memory insufficient or error. Increase GPU memory preservation or reduce video length."
ko_msg = "GPU 메모리가 부족하거나 오류가 발생했습니다. GPU 메모리 보존 값을 늘리거나 동영상 길이를 줄여보세요."
elif "샘플링 중 오류" in error_msg or "sampling process" in error_msg:
if "부분" in error_msg or "partial" in error_msg:
en_msg = "Error during sampling, but partial video has been generated."
ko_msg = "샘플링 중 오류가 발생했지만 일부 동영상이 생성되었습니다."
else:
en_msg = "Error during sampling. Unable to generate video."
ko_msg = "샘플링 중 오류가 발생했습니다. 비디오 생성에 실패했습니다."
elif "네트워크" in error_msg or "Network" in error_msg or "ConnectionError" in error_msg or "ReadTimeoutError" in error_msg:
en_msg = "Network is unstable, model download timed out. Please try again later."
ko_msg = "네트워크가 불안정하여 모델 다운로드가 시간 초과되었습니다. 잠시 후 다시 시도해 주세요."
elif "VAE" in error_msg or "디코딩" in error_msg or "decode" in error_msg:
en_msg = "Error during video decoding or saving process. Try a different seed."
ko_msg = "비디오 디코딩/저장 중 오류가 발생했습니다. 다른 시드를 시도해보세요."
else:
en_msg = f"Processing error: {error_msg}"
ko_msg = f"처리 중 오류가 발생했습니다: {error_msg}"
return f"""
<div class="error-message" id="custom-error-container">
<div class="error-msg-en" data-lang="en">
<span class="error-icon">⚠️</span> {en_msg}
</div>
<div class="error-msg-ko" data-lang="ko">
<span class="error-icon">⚠️</span> {ko_msg}
</div>
</div>
<script>
(function() {{
const errorContainer = document.getElementById('custom-error-container');
if (errorContainer) {{
const currentLang = window.currentLang || 'en';
const errMsgs = errorContainer.querySelectorAll('[data-lang]');
errMsgs.forEach(msg => {{
msg.style.display = (msg.getAttribute('data-lang') === currentLang) ? 'block' : 'none';
}});
const defaultErrorElements = document.querySelectorAll('.error');
defaultErrorElements.forEach(el => {{
el.style.display = 'none';
}});
}}
}})();
</script>
"""