Spaces:
Running
on
Zero
Running
on
Zero
from diffusers_helper.hf_login import login | |
import os | |
import threading | |
import time | |
import requests | |
from requests.adapters import HTTPAdapter | |
from urllib3.util.retry import Retry | |
import json | |
os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download'))) | |
# 영어/한국어 번역 딕셔너리 | |
translations = { | |
"en": { | |
"title": "FramePack - Image to Video Generation", | |
"upload_image": "Upload Image", | |
"prompt": "Prompt", | |
"quick_prompts": "Quick Prompts", | |
"start_generation": "Generate", | |
"stop_generation": "Stop", | |
"use_teacache": "Use TeaCache", | |
"teacache_info": "Faster speed, but may result in slightly worse finger and hand generation.", | |
"negative_prompt": "Negative Prompt", | |
"seed": "Seed", | |
"video_length": "Video Length (max 5 seconds)", | |
"latent_window": "Latent Window Size", | |
"steps": "Inference Steps", | |
"steps_info": "Changing this value is not recommended.", | |
"cfg_scale": "CFG Scale", | |
"distilled_cfg": "Distilled CFG Scale", | |
"distilled_cfg_info": "Changing this value is not recommended.", | |
"cfg_rescale": "CFG Rescale", | |
"gpu_memory": "GPU Memory Preservation (GB) (larger means slower)", | |
"gpu_memory_info": "Set this to a larger value if you encounter OOM errors. Larger values cause slower speed.", | |
"next_latents": "Next Latents", | |
"generated_video": "Generated Video", | |
"sampling_note": "Note: Due to reversed sampling, ending actions will be generated before starting actions. If the starting action is not in the video, please wait, it will be generated later.", | |
"error_message": "Error", | |
"processing_error": "Processing error", | |
"network_error": "Network connection is unstable, model download timed out. Please try again later.", | |
"memory_error": "GPU memory insufficient, please try increasing GPU memory preservation value or reduce video length.", | |
"model_error": "Failed to load model, possibly due to network issues or high server load. Please try again later.", | |
"partial_video": "Processing error, but partial video has been generated", | |
"processing_interrupt": "Processing was interrupted, but partial video has been generated" | |
}, | |
"ko": { | |
"title": "FramePack - 이미지에서 동영상 생성", | |
"upload_image": "이미지 업로드", | |
"prompt": "프롬프트", | |
"quick_prompts": "빠른 프롬프트 목록", | |
"start_generation": "생성 시작", | |
"stop_generation": "생성 중지", | |
"use_teacache": "TeaCache 사용", | |
"teacache_info": "더 빠른 속도를 제공하지만 손가락이나 손 생성 품질이 약간 떨어질 수 있습니다.", | |
"negative_prompt": "부정 프롬프트", | |
"seed": "랜덤 시드", | |
"video_length": "동영상 길이 (최대 5초)", | |
"latent_window": "잠재 윈도우 크기", | |
"steps": "추론 스텝 수", | |
"steps_info": "이 값을 변경하는 것은 권장되지 않습니다.", | |
"cfg_scale": "CFG 스케일", | |
"distilled_cfg": "증류된 CFG 스케일", | |
"distilled_cfg_info": "이 값을 변경하는 것은 권장되지 않습니다.", | |
"cfg_rescale": "CFG 재스케일", | |
"gpu_memory": "GPU 메모리 보존 (GB) (값이 클수록 속도가 느려짐)", | |
"gpu_memory_info": "OOM 오류가 발생하면 이 값을 더 크게 설정하십시오. 값이 클수록 속도가 느려집니다.", | |
"next_latents": "다음 잠재 변수", | |
"generated_video": "생성된 동영상", | |
"sampling_note": "주의: 역순 샘플링 때문에, 종료 동작이 시작 동작보다 먼저 생성됩니다. 시작 동작이 동영상에 나타나지 않으면 기다려 주십시오. 나중에 생성됩니다.", | |
"error_message": "오류 메시지", | |
"processing_error": "처리 중 오류 발생", | |
"network_error": "네트워크 연결이 불안정하여 모델 다운로드가 시간 초과되었습니다. 나중에 다시 시도해 주십시오.", | |
"memory_error": "GPU 메모리가 부족합니다. GPU 메모리 보존 값을 늘리거나 동영상 길이를 줄여보세요.", | |
"model_error": "모델 로드에 실패했습니다. 네트워크 문제 또는 서버 부하가 높을 수 있습니다. 나중에 다시 시도해 주십시오.", | |
"partial_video": "처리 중 오류가 발생했지만 일부 동영상이 생성되었습니다.", | |
"processing_interrupt": "처리 중 중단되었지만 일부 동영상이 생성되었습니다." | |
} | |
} | |
# 다국어 텍스트를 반환하는 함수 | |
def get_translation(key, lang="en"): | |
if lang in translations and key in translations[lang]: | |
return translations[lang][key] | |
# 기본값(영어) 반환 | |
return translations["en"].get(key, key) | |
# 디폴트 언어를 영어로 설정 | |
current_language = "en" | |
# 언어 전환 함수 | |
def switch_language(): | |
global current_language | |
current_language = "ko" if current_language == "en" else "en" | |
return current_language | |
import gradio as gr | |
import torch | |
import traceback | |
import einops | |
import safetensors.torch as sf | |
import numpy as np | |
import math | |
# Spaces 환경 체크 | |
IN_HF_SPACE = os.environ.get('SPACE_ID') is not None | |
# GPU 사용 여부 기록 | |
GPU_AVAILABLE = False | |
GPU_INITIALIZED = False | |
last_update_time = time.time() | |
# Spaces 환경이라면, spaces 모듈 불러오기 시도 | |
if IN_HF_SPACE: | |
try: | |
import spaces | |
print("Hugging Face Space 환경에서 실행 중, spaces 모듈을 불러왔습니다.") | |
# GPU 사용 가능 여부 확인 | |
try: | |
GPU_AVAILABLE = torch.cuda.is_available() | |
print(f"GPU available: {GPU_AVAILABLE}") | |
if GPU_AVAILABLE: | |
print(f"GPU device name: {torch.cuda.get_device_name(0)}") | |
print(f"GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9} GB") | |
# 작은 테스트 연산으로 실제 GPU 동작 확인 | |
test_tensor = torch.zeros(1, device='cuda') | |
test_tensor = test_tensor + 1 | |
del test_tensor | |
print("GPU 테스트 연산 성공") | |
else: | |
print("경고: CUDA는 가능하다고 하나 실제 GPU 디바이스를 찾을 수 없습니다.") | |
except Exception as e: | |
GPU_AVAILABLE = False | |
print(f"GPU 확인 중 오류 발생: {e}") | |
print("CPU 모드로 진행합니다.") | |
except ImportError: | |
print("spaces 모듈을 불러올 수 없습니다. Spaces 환경이 아닐 수 있습니다.") | |
GPU_AVAILABLE = torch.cuda.is_available() | |
from PIL import Image | |
from diffusers import AutoencoderKLHunyuanVideo | |
from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer | |
from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake | |
from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp | |
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked | |
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan | |
from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete, IN_HF_SPACE as MEMORY_IN_HF_SPACE | |
from diffusers_helper.thread_utils import AsyncStream, async_run | |
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html | |
from transformers import SiglipImageProcessor, SiglipVisionModel | |
from diffusers_helper.clip_vision import hf_clip_vision_encode | |
from diffusers_helper.bucket_tools import find_nearest_bucket | |
outputs_folder = './outputs/' | |
os.makedirs(outputs_folder, exist_ok=True) | |
# Spaces 환경이 아닐 경우, VRAM 확인 | |
if not IN_HF_SPACE: | |
try: | |
if torch.cuda.is_available(): | |
free_mem_gb = get_cuda_free_memory_gb(gpu) | |
print(f'남은 VRAM: {free_mem_gb} GB') | |
else: | |
free_mem_gb = 6.0 # 기본값 | |
print("CUDA를 사용할 수 없으므로 기본 메모리 설정을 사용합니다.") | |
except Exception as e: | |
free_mem_gb = 6.0 | |
print(f"CUDA 메모리 확인 중 오류 발생: {e} / 기본값 사용") | |
high_vram = free_mem_gb > 60 | |
print(f'high_vram 모드: {high_vram}') | |
else: | |
# Spaces 환경에서 기본값 설정 | |
print("Spaces 환경에서 기본 메모리 설정 사용") | |
try: | |
if GPU_AVAILABLE: | |
free_mem_gb = torch.cuda.get_device_properties(0).total_memory / 1e9 * 0.9 | |
high_vram = free_mem_gb > 10 # 조금 더 보수적으로 설정 | |
else: | |
free_mem_gb = 6.0 | |
high_vram = False | |
except Exception as e: | |
print(f"GPU 메모리 확인 중 오류: {e}") | |
free_mem_gb = 6.0 | |
high_vram = False | |
print(f'GPU 메모리: {free_mem_gb:.2f} GB, High-VRAM 모드: {high_vram}') | |
# 전역 모델 참조 | |
models = {} | |
cpu_fallback_mode = not GPU_AVAILABLE # GPU가 불가능하면 CPU 모드로 | |
def load_models(): | |
global models, cpu_fallback_mode, GPU_INITIALIZED | |
if GPU_INITIALIZED: | |
print("모델이 이미 로드되었습니다. 다시 로드하지 않습니다.") | |
return models | |
print("모델 로드를 시작합니다...") | |
try: | |
device = 'cuda' if GPU_AVAILABLE and not cpu_fallback_mode else 'cpu' | |
model_device = 'cpu' # 우선 CPU에 로드 | |
# 기본적으로 GPU면 float16, CPU면 float32 | |
dtype = torch.float16 if GPU_AVAILABLE else torch.float32 | |
transformer_dtype = torch.bfloat16 if GPU_AVAILABLE else torch.float32 | |
print(f"사용 디바이스: {device}, vae/text encoder dtype: {dtype}, transformer dtype: {transformer_dtype}") | |
try: | |
text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=dtype).to(model_device) | |
text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=dtype).to(model_device) | |
tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer') | |
tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2') | |
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=dtype).to(model_device) | |
feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor') | |
image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=dtype).to(model_device) | |
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=transformer_dtype).to(model_device) | |
print("모든 모델을 성공적으로 로드했습니다.") | |
except Exception as e: | |
print(f"모델 로드 중 오류 발생: {e}") | |
print("정밀도를 낮춰 다시 로드합니다...") | |
dtype = torch.float32 | |
transformer_dtype = torch.float32 | |
cpu_fallback_mode = True | |
text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=dtype).to('cpu') | |
text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=dtype).to('cpu') | |
tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer') | |
tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2') | |
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=dtype).to('cpu') | |
feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor') | |
image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=dtype).to('cpu') | |
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=transformer_dtype).to('cpu') | |
print("CPU 모드로 모델 로드 성공") | |
vae.eval() | |
text_encoder.eval() | |
text_encoder_2.eval() | |
image_encoder.eval() | |
transformer.eval() | |
if not high_vram or cpu_fallback_mode: | |
vae.enable_slicing() | |
vae.enable_tiling() | |
transformer.high_quality_fp32_output_for_inference = True | |
print('transformer.high_quality_fp32_output_for_inference = True') | |
if not cpu_fallback_mode: | |
transformer.to(dtype=transformer_dtype) | |
vae.to(dtype=dtype) | |
image_encoder.to(dtype=dtype) | |
text_encoder.to(dtype=dtype) | |
text_encoder_2.to(dtype=dtype) | |
vae.requires_grad_(False) | |
text_encoder.requires_grad_(False) | |
text_encoder_2.requires_grad_(False) | |
image_encoder.requires_grad_(False) | |
transformer.requires_grad_(False) | |
if torch.cuda.is_available() and not cpu_fallback_mode: | |
try: | |
if not high_vram: | |
# 메모리 최적화 | |
DynamicSwapInstaller.install_model(transformer, device=device) | |
DynamicSwapInstaller.install_model(text_encoder, device=device) | |
else: | |
text_encoder.to(device) | |
text_encoder_2.to(device) | |
image_encoder.to(device) | |
vae.to(device) | |
transformer.to(device) | |
print(f"모델을 {device}로 이동 완료") | |
except Exception as e: | |
print(f"{device}로 모델 이동 중 오류 발생: {e}") | |
print("CPU 모드로 전환") | |
cpu_fallback_mode = True | |
models_local = { | |
'text_encoder': text_encoder, | |
'text_encoder_2': text_encoder_2, | |
'tokenizer': tokenizer, | |
'tokenizer_2': tokenizer_2, | |
'vae': vae, | |
'feature_extractor': feature_extractor, | |
'image_encoder': image_encoder, | |
'transformer': transformer | |
} | |
GPU_INITIALIZED = True | |
models.update(models_local) | |
print(f"모델 로드 완료. 현재 실행 모드: {'CPU' if cpu_fallback_mode else 'GPU'}") | |
return models | |
except Exception as e: | |
print(f"모델 로드 중 예상치 못한 오류가 발생: {e}") | |
traceback.print_exc() | |
error_info = { | |
"error": str(e), | |
"traceback": traceback.format_exc(), | |
"cuda_available": torch.cuda.is_available(), | |
"device": "cpu" if cpu_fallback_mode else "cuda", | |
} | |
try: | |
with open(os.path.join(outputs_folder, "error_log.txt"), "w") as f: | |
f.write(str(error_info)) | |
except: | |
pass | |
cpu_fallback_mode = True | |
return {} | |
if IN_HF_SPACE and 'spaces' in globals() and GPU_AVAILABLE: | |
try: | |
def initialize_models(): | |
"""@spaces.GPU 환경에서 모델을 초기화""" | |
global GPU_INITIALIZED | |
try: | |
result = load_models() | |
GPU_INITIALIZED = True | |
return result | |
except Exception as e: | |
print(f"@spaces.GPU 모델 초기화 중 오류: {e}") | |
traceback.print_exc() | |
global cpu_fallback_mode | |
cpu_fallback_mode = True | |
return load_models() | |
except Exception as e: | |
print(f"spaces.GPU 데코레이터 생성 중 오류: {e}") | |
def initialize_models(): | |
return load_models() | |
def get_models(): | |
"""모델을 불러오거나 이미 불러왔다면 반환""" | |
global models, GPU_INITIALIZED | |
model_loading_key = "__model_loading__" | |
if not models: | |
if model_loading_key in globals(): | |
print("모델 로딩 중입니다. 대기 중...") | |
import time | |
start_wait = time.time() | |
while not models and model_loading_key in globals(): | |
time.sleep(0.5) | |
if time.time() - start_wait > 60: | |
print("모델 로딩 대기 시간 초과") | |
break | |
if models: | |
return models | |
try: | |
globals()[model_loading_key] = True | |
if IN_HF_SPACE and 'spaces' in globals() and GPU_AVAILABLE and not cpu_fallback_mode: | |
try: | |
print("GPU 데코레이터(@spaces.GPU)로 모델 로딩 시도") | |
models_local = initialize_models() | |
models.update(models_local) | |
except Exception as e: | |
print(f"GPU 데코레이터 로딩 실패: {e} / 직접 로딩 시도") | |
models_local = load_models() | |
models.update(models_local) | |
else: | |
print("모델 직접 로딩 시도") | |
models_local = load_models() | |
models.update(models_local) | |
except Exception as e: | |
print(f"모델 로드 중 오류: {e}") | |
traceback.print_exc() | |
models.clear() | |
finally: | |
if model_loading_key in globals(): | |
del globals()[model_loading_key] | |
return models | |
stream = AsyncStream() | |
def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache): | |
global last_update_time | |
last_update_time = time.time() | |
total_second_length = min(total_second_length, 5.0) | |
try: | |
models_local = get_models() | |
if not models_local: | |
error_msg = "모델 로드에 실패했습니다. 로그를 확인하세요." | |
print(error_msg) | |
stream.output_queue.push(('error', error_msg)) | |
stream.output_queue.push(('end', None)) | |
return | |
text_encoder = models_local['text_encoder'] | |
text_encoder_2 = models_local['text_encoder_2'] | |
tokenizer = models_local['tokenizer'] | |
tokenizer_2 = models_local['tokenizer_2'] | |
vae = models_local['vae'] | |
feature_extractor = models_local['feature_extractor'] | |
image_encoder = models_local['image_encoder'] | |
transformer = models_local['transformer'] | |
except Exception as e: | |
error_msg = f"모델 가져오기 실패: {e}" | |
print(error_msg) | |
traceback.print_exc() | |
stream.output_queue.push(('error', error_msg)) | |
stream.output_queue.push(('end', None)) | |
return | |
device = 'cuda' if GPU_AVAILABLE and not cpu_fallback_mode else 'cpu' | |
print(f"추론 디바이스: {device}") | |
if cpu_fallback_mode: | |
print("CPU 모드에서 일부 파라미터를 축소합니다.") | |
latent_window_size = min(latent_window_size, 5) | |
steps = min(steps, 15) | |
total_second_length = min(total_second_length, 2.0) | |
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4) | |
total_latent_sections = int(max(round(total_latent_sections), 1)) | |
job_id = generate_timestamp() | |
last_output_filename = None | |
history_pixels = None | |
history_latents = None | |
total_generated_latent_frames = 0 | |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...')))) | |
try: | |
if not high_vram and not cpu_fallback_mode: | |
try: | |
unload_complete_models( | |
text_encoder, text_encoder_2, image_encoder, vae, transformer | |
) | |
except Exception as e: | |
print(f"모델 언로드 중 오류: {e}") | |
# 텍스트 인코딩 | |
last_update_time = time.time() | |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...')))) | |
try: | |
if not high_vram and not cpu_fallback_mode: | |
fake_diffusers_current_device(text_encoder, device) | |
load_model_as_complete(text_encoder_2, target_device=device) | |
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2) | |
if cfg == 1: | |
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler) | |
else: | |
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2) | |
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512) | |
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512) | |
except Exception as e: | |
error_msg = f"텍스트 인코딩 오류: {e}" | |
print(error_msg) | |
traceback.print_exc() | |
stream.output_queue.push(('error', error_msg)) | |
stream.output_queue.push(('end', None)) | |
return | |
# 입력 이미지 처리 | |
last_update_time = time.time() | |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...')))) | |
try: | |
H, W, C = input_image.shape | |
height, width = find_nearest_bucket(H, W, resolution=640) | |
if cpu_fallback_mode: | |
height = min(height, 320) | |
width = min(width, 320) | |
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height) | |
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png')) | |
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1 | |
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None] | |
except Exception as e: | |
error_msg = f"이미지 전처리 오류: {e}" | |
print(error_msg) | |
traceback.print_exc() | |
stream.output_queue.push(('error', error_msg)) | |
stream.output_queue.push(('end', None)) | |
return | |
# VAE 인코딩 | |
last_update_time = time.time() | |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...')))) | |
try: | |
if not high_vram and not cpu_fallback_mode: | |
load_model_as_complete(vae, target_device=device) | |
start_latent = vae_encode(input_image_pt, vae) | |
except Exception as e: | |
error_msg = f"VAE 인코딩 오류: {e}" | |
print(error_msg) | |
traceback.print_exc() | |
stream.output_queue.push(('error', error_msg)) | |
stream.output_queue.push(('end', None)) | |
return | |
# CLIP Vision 인코딩 | |
last_update_time = time.time() | |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...')))) | |
try: | |
if not high_vram and not cpu_fallback_mode: | |
load_model_as_complete(image_encoder, target_device=device) | |
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder) | |
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state | |
except Exception as e: | |
error_msg = f"CLIP Vision 인코딩 오류: {e}" | |
print(error_msg) | |
traceback.print_exc() | |
stream.output_queue.push(('error', error_msg)) | |
stream.output_queue.push(('end', None)) | |
return | |
# dtype 변환 | |
try: | |
llama_vec = llama_vec.to(transformer.dtype) | |
llama_vec_n = llama_vec_n.to(transformer.dtype) | |
clip_l_pooler = clip_l_pooler.to(transformer.dtype) | |
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype) | |
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype) | |
except Exception as e: | |
error_msg = f"dtype 변환 오류: {e}" | |
print(error_msg) | |
traceback.print_exc() | |
stream.output_queue.push(('error', error_msg)) | |
stream.output_queue.push(('end', None)) | |
return | |
# 샘플링 진행 | |
last_update_time = time.time() | |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...')))) | |
rnd = torch.Generator("cpu").manual_seed(seed) | |
num_frames = latent_window_size * 4 - 3 | |
try: | |
history_latents = torch.zeros(size=(1, 16, 1 + 2 + 16, height // 8, width // 8), dtype=torch.float32).cpu() | |
history_pixels = None | |
total_generated_latent_frames = 0 | |
except Exception as e: | |
error_msg = f"히스토리 상태 초기화 오류: {e}" | |
print(error_msg) | |
traceback.print_exc() | |
stream.output_queue.push(('error', error_msg)) | |
stream.output_queue.push(('end', None)) | |
return | |
latent_paddings = reversed(range(total_latent_sections)) | |
if total_latent_sections > 4: | |
latent_paddings = [3] + [2]*(total_latent_sections - 3) + [1, 0] | |
for latent_padding in latent_paddings: | |
last_update_time = time.time() | |
is_last_section = latent_padding == 0 | |
latent_padding_size = latent_padding * latent_window_size | |
if stream.input_queue.top() == 'end': | |
# 중단 신호 수신 시 부분 결과 반환 | |
if history_pixels is not None and total_generated_latent_frames > 0: | |
try: | |
output_filename = os.path.join(outputs_folder, f'{job_id}_final_{total_generated_latent_frames}.mp4') | |
save_bcthw_as_mp4(history_pixels, output_filename, fps=30) | |
stream.output_queue.push(('file', output_filename)) | |
except Exception as e: | |
print(f"마지막 비디오 저장 오류: {e}") | |
stream.output_queue.push(('end', None)) | |
return | |
print(f'latent_padding_size = {latent_padding_size}, is_last_section = {is_last_section}') | |
try: | |
indices = torch.arange(0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])).unsqueeze(0) | |
clean_latent_indices_pre, blank_indices, latent_indices, clean_latent_indices_post, clean_latent_2x_indices, clean_latent_4x_indices = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1) | |
clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1) | |
clean_latents_pre = start_latent.to(history_latents) | |
clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, :1 + 2 + 16, :, :].split([1, 2, 16], dim=2) | |
clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2) | |
except Exception as e: | |
error_msg = f"샘플링 데이터 준비 오류: {e}" | |
print(error_msg) | |
traceback.print_exc() | |
if last_output_filename: | |
stream.output_queue.push(('file', last_output_filename)) | |
continue | |
if not high_vram and not cpu_fallback_mode: | |
try: | |
unload_complete_models() | |
move_model_to_device_with_memory_preservation(transformer, target_device=device, preserved_memory_gb=gpu_memory_preservation) | |
except Exception as e: | |
print(f"transformer GPU 이동 오류: {e}") | |
if use_teacache and not cpu_fallback_mode: | |
try: | |
transformer.initialize_teacache(enable_teacache=True, num_steps=steps) | |
except Exception as e: | |
print(f"teacache 초기화 오류: {e}") | |
transformer.initialize_teacache(enable_teacache=False) | |
else: | |
transformer.initialize_teacache(enable_teacache=False) | |
def callback(d): | |
global last_update_time | |
last_update_time = time.time() | |
try: | |
if stream.input_queue.top() == 'end': | |
stream.output_queue.push(('end', None)) | |
raise KeyboardInterrupt('사용자 중단 요청') | |
preview = d['denoised'] | |
preview = vae_decode_fake(preview) | |
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8) | |
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c') | |
current_step = d['i'] + 1 | |
percentage = int(100.0 * current_step / steps) | |
hint = f'Sampling {current_step}/{steps}' | |
desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-30).' | |
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint)))) | |
except KeyboardInterrupt: | |
raise | |
except Exception as e: | |
print(f"콜백 중 오류: {e}") | |
return | |
try: | |
sampling_start_time = time.time() | |
print(f"샘플링 시작, device: {device}, dtype: {transformer.dtype}, TeaCache: {use_teacache and not cpu_fallback_mode}") | |
try: | |
generated_latents = sample_hunyuan( | |
transformer=transformer, | |
sampler='unipc', | |
width=width, | |
height=height, | |
frames=num_frames, | |
real_guidance_scale=cfg, | |
distilled_guidance_scale=gs, | |
guidance_rescale=rs, | |
num_inference_steps=steps, | |
generator=rnd, | |
prompt_embeds=llama_vec, | |
prompt_embeds_mask=llama_attention_mask, | |
prompt_poolers=clip_l_pooler, | |
negative_prompt_embeds=llama_vec_n, | |
negative_prompt_embeds_mask=llama_attention_mask_n, | |
negative_prompt_poolers=clip_l_pooler_n, | |
device=device, | |
dtype=transformer.dtype, | |
image_embeddings=image_encoder_last_hidden_state, | |
latent_indices=latent_indices, | |
clean_latents=clean_latents, | |
clean_latent_indices=clean_latent_indices, | |
clean_latents_2x=clean_latents_2x, | |
clean_latent_2x_indices=clean_latent_2x_indices, | |
clean_latents_4x=clean_latents_4x, | |
clean_latent_4x_indices=clean_latent_4x_indices, | |
callback=callback, | |
) | |
print(f"샘플링 완료. 소요 시간: {time.time() - sampling_start_time:.2f} 초") | |
except KeyboardInterrupt as e: | |
print(f"사용자 중단: {e}") | |
if last_output_filename: | |
stream.output_queue.push(('file', last_output_filename)) | |
error_msg = "사용자에 의해 중단되었지만, 일부 비디오가 생성되었습니다." | |
else: | |
error_msg = "사용자에 의해 중단되었습니다. 비디오가 생성되지 않았습니다." | |
stream.output_queue.push(('error', error_msg)) | |
stream.output_queue.push(('end', None)) | |
return | |
except Exception as e: | |
print(f"샘플링 중 오류: {e}") | |
traceback.print_exc() | |
if last_output_filename: | |
stream.output_queue.push(('file', last_output_filename)) | |
error_msg = f"샘플링 중 오류(일부 비디오 생성됨): {e}" | |
stream.output_queue.push(('error', error_msg)) | |
else: | |
error_msg = f"샘플링 중 오류: {e}" | |
stream.output_queue.push(('error', error_msg)) | |
stream.output_queue.push(('end', None)) | |
return | |
try: | |
if is_last_section: | |
generated_latents = torch.cat([start_latent.to(generated_latents), generated_latents], dim=2) | |
total_generated_latent_frames += int(generated_latents.shape[2]) | |
history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2) | |
except Exception as e: | |
error_msg = f"생성된 잠재 변수 처리 오류: {e}" | |
print(error_msg) | |
traceback.print_exc() | |
if last_output_filename: | |
stream.output_queue.push(('file', last_output_filename)) | |
stream.output_queue.push(('error', error_msg)) | |
stream.output_queue.push(('end', None)) | |
return | |
if not high_vram and not cpu_fallback_mode: | |
try: | |
offload_model_from_device_for_memory_preservation(transformer, target_device=device, preserved_memory_gb=8) | |
load_model_as_complete(vae, target_device=device) | |
except Exception as e: | |
print(f"모델 메모리 관리 오류: {e}") | |
try: | |
real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :] | |
except Exception as e: | |
error_msg = f"히스토리 잠재 변수 처리 오류: {e}" | |
print(error_msg) | |
if last_output_filename: | |
stream.output_queue.push(('file', last_output_filename)) | |
continue | |
try: | |
vae_start_time = time.time() | |
print(f"VAE 디코딩 시작, 잠재 변수 크기: {real_history_latents.shape}") | |
if history_pixels is None: | |
history_pixels = vae_decode(real_history_latents, vae).cpu() | |
else: | |
section_latent_frames = (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2) | |
overlapped_frames = latent_window_size * 4 - 3 | |
current_pixels = vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu() | |
history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames) | |
print(f"VAE 디코딩 완료, 소요 시간: {time.time() - vae_start_time:.2f} 초") | |
if not high_vram and not cpu_fallback_mode: | |
try: | |
unload_complete_models() | |
except Exception as e: | |
print(f"모델 언로드 중 오류: {e}") | |
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4') | |
save_start_time = time.time() | |
save_bcthw_as_mp4(history_pixels, output_filename, fps=30) | |
print(f"비디오 저장 완료, 소요 시간: {time.time() - save_start_time:.2f} 초") | |
print(f'디코딩 완료. 현재 latent 크기: {real_history_latents.shape}, pixel 크기: {history_pixels.shape}') | |
last_output_filename = output_filename | |
stream.output_queue.push(('file', output_filename)) | |
except Exception as e: | |
print(f"비디오 디코딩/저장 중 오류: {e}") | |
traceback.print_exc() | |
if last_output_filename: | |
stream.output_queue.push(('file', last_output_filename)) | |
error_msg = f"비디오 디코딩/저장 오류: {e}" | |
stream.output_queue.push(('error', error_msg)) | |
continue | |
if is_last_section: | |
break | |
except Exception as e: | |
print(f"처리 중 오류 발생: {e} (type: {type(e)})") | |
traceback.print_exc() | |
if isinstance(e, KeyboardInterrupt): | |
print("KeyboardInterrupt 발생") | |
if not high_vram and not cpu_fallback_mode: | |
try: | |
unload_complete_models( | |
text_encoder, text_encoder_2, image_encoder, vae, transformer | |
) | |
except Exception as unload_error: | |
print(f"언로드 오류: {unload_error}") | |
if last_output_filename: | |
stream.output_queue.push(('file', last_output_filename)) | |
error_msg = f"처리 중 오류: {e}" | |
stream.output_queue.push(('error', error_msg)) | |
print("worker 함수 종료, 'end' 신호 전송") | |
stream.output_queue.push(('end', None)) | |
return | |
if IN_HF_SPACE and 'spaces' in globals(): | |
def process_with_gpu(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache): | |
global stream | |
assert input_image is not None, 'No input image!' | |
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True) | |
try: | |
stream = AsyncStream() | |
async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache) | |
output_filename = None | |
prev_output_filename = None | |
error_message = None | |
while True: | |
try: | |
flag, data = stream.output_queue.next() | |
if flag == 'file': | |
output_filename = data | |
prev_output_filename = output_filename | |
yield output_filename, gr.update(), gr.update(), '', gr.update(interactive=False), gr.update(interactive=True) | |
if flag == 'progress': | |
preview, desc, html = data | |
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True) | |
if flag == 'error': | |
error_message = data | |
print(f"오류 메시지 수신: {error_message}") | |
if flag == 'end': | |
if output_filename is None and prev_output_filename is not None: | |
output_filename = prev_output_filename | |
if error_message: | |
error_html = create_error_html(error_message) | |
yield output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False) | |
else: | |
yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False) | |
break | |
except Exception as e: | |
print(f"출력 처리 중 오류: {e}") | |
current_time = time.time() | |
if current_time - last_update_time > 60: | |
print(f"처리가 {current_time - last_update_time:.1f}초 동안 정지됨. 타임아웃으로 간주.") | |
if prev_output_filename: | |
error_html = create_error_html("처리 시간이 초과되었지만 일부 동영상이 생성되었습니다.", is_timeout=True) | |
yield prev_output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False) | |
else: | |
error_html = create_error_html(f"처리 시간 초과: {e}", is_timeout=True) | |
yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False) | |
break | |
except Exception as e: | |
print(f"프로세스 시작 오류: {e}") | |
traceback.print_exc() | |
error_msg = str(e) | |
error_html = create_error_html(error_msg) | |
yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False) | |
process = process_with_gpu | |
else: | |
def process(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache): | |
global stream | |
assert input_image is not None, 'No input image!' | |
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True) | |
try: | |
stream = AsyncStream() | |
async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache) | |
output_filename = None | |
prev_output_filename = None | |
error_message = None | |
while True: | |
try: | |
flag, data = stream.output_queue.next() | |
if flag == 'file': | |
output_filename = data | |
prev_output_filename = output_filename | |
yield output_filename, gr.update(), gr.update(), '', gr.update(interactive=False), gr.update(interactive=True) | |
if flag == 'progress': | |
preview, desc, html = data | |
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True) | |
if flag == 'error': | |
error_message = data | |
print(f"오류 메시지 수신: {error_message}") | |
if flag == 'end': | |
if output_filename is None and prev_output_filename is not None: | |
output_filename = prev_output_filename | |
if error_message: | |
error_html = create_error_html(error_message) | |
yield output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False) | |
else: | |
yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False) | |
break | |
except Exception as e: | |
print(f"출력 처리 중 오류: {e}") | |
current_time = time.time() | |
if current_time - last_update_time > 60: | |
print(f"{current_time - last_update_time:.1f}초 동안 진행이 없어 타임아웃으로 간주합니다.") | |
if prev_output_filename: | |
error_html = create_error_html("처리 시간이 초과되었지만 일부 동영상이 생성되었습니다.", is_timeout=True) | |
yield prev_output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False) | |
else: | |
error_html = create_error_html(f"처리 시간 초과: {e}", is_timeout=True) | |
yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False) | |
break | |
except Exception as e: | |
print(f"프로세스 시작 오류: {e}") | |
traceback.print_exc() | |
error_msg = str(e) | |
error_html = create_error_html(error_msg) | |
yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False) | |
def end_process(): | |
print("사용자가 중지 버튼을 눌렀습니다. 종료 신호를 보냅니다...") | |
if 'stream' in globals() and stream is not None: | |
try: | |
current_top = stream.input_queue.top() | |
print(f"현재 입력 큐 top: {current_top}") | |
except Exception as e: | |
print(f"입력 큐 확인 오류: {e}") | |
try: | |
stream.input_queue.push('end') | |
print("end 신호 전송 완료") | |
try: | |
current_top_after = stream.input_queue.top() | |
print(f"신호 전송 후 입력 큐 top: {current_top_after}") | |
except Exception as e: | |
print(f"신호 전송 후 큐 상태 확인 오류: {e}") | |
except Exception as e: | |
print(f"end 신호 전송 오류: {e}") | |
else: | |
print("stream이 초기화되지 않아 종료 신호를 보낼 수 없습니다.") | |
return None | |
quick_prompts = [ | |
'The girl dances gracefully, with clear movements, full of charm.', | |
'A character doing some simple body movements.', | |
] | |
quick_prompts = [[x] for x in quick_prompts] | |
def make_custom_css(): | |
progress_bar_css = make_progress_bar_css() | |
responsive_css = """ | |
/* progress_bar_css로부터 불러온 기본 설정 + 추가 */ | |
#app-container { | |
max-width: 100%; | |
margin: 0 auto; | |
} | |
#language-toggle { | |
position: fixed; | |
top: 10px; | |
right: 10px; | |
z-index: 1000; | |
background-color: rgba(0, 0, 0, 0.7); | |
color: white; | |
border: none; | |
border-radius: 4px; | |
padding: 5px 10px; | |
cursor: pointer; | |
font-size: 14px; | |
} | |
h1 { | |
font-size: 2rem; | |
text-align: center; | |
margin-bottom: 1rem; | |
} | |
.start-btn, .stop-btn { | |
min-height: 45px; | |
font-size: 1rem; | |
} | |
@media (max-width: 768px) { | |
h1 { | |
font-size: 1.5rem; | |
margin-bottom: 0.5rem; | |
} | |
.mobile-full-width { | |
flex-direction: column !important; | |
} | |
.mobile-full-width > .gr-block { | |
min-width: 100% !important; | |
flex-grow: 1; | |
} | |
.video-container { | |
height: auto !important; | |
} | |
.button-container button { | |
min-height: 50px; | |
font-size: 1rem; | |
touch-action: manipulation; | |
} | |
.slider-container input[type="range"] { | |
height: 30px; | |
} | |
} | |
@media (min-width: 769px) and (max-width: 1024px) { | |
.tablet-adjust { | |
width: 48% !important; | |
} | |
} | |
@media (prefers-color-scheme: dark) { | |
.dark-mode-text { | |
color: #f0f0f0; | |
} | |
.dark-mode-bg { | |
background-color: #2a2a2a; | |
} | |
} | |
button, input, select, textarea { | |
font-size: 16px; | |
} | |
button, .interactive-element { | |
min-height: 44px; | |
min-width: 44px; | |
} | |
.high-contrast { | |
color: #fff; | |
background-color: #000; | |
} | |
.progress-container { | |
margin-top: 10px; | |
margin-bottom: 10px; | |
} | |
#error-message { | |
color: #ff4444; | |
font-weight: bold; | |
padding: 10px; | |
border-radius: 4px; | |
margin-top: 10px; | |
} | |
.error-message { | |
background-color: rgba(255, 0, 0, 0.1); | |
padding: 10px; | |
border-radius: 4px; | |
margin-top: 10px; | |
border: 1px solid #ffcccc; | |
} | |
.error-msg-en, .error-msg-ko { | |
font-weight: bold; | |
} | |
.error-icon { | |
color: #ff4444; | |
font-size: 18px; | |
margin-right: 8px; | |
} | |
#error-message:empty { | |
background-color: transparent; | |
border: none; | |
padding: 0; | |
margin: 0; | |
} | |
.error { | |
display: none !important; | |
} | |
""" | |
return progress_bar_css + responsive_css | |
css = make_custom_css() | |
block = gr.Blocks(css=css).queue() | |
with block: | |
gr.HTML(""" | |
<div id="app-container"> | |
<button id="language-toggle" onclick="toggleLanguage()">한국어 / English</button> | |
</div> | |
<script> | |
window.currentLang = "en"; | |
function toggleLanguage() { | |
window.currentLang = (window.currentLang === "en") ? "ko" : "en"; | |
const elements = document.querySelectorAll('[data-i18n]'); | |
elements.forEach(el => { | |
const key = el.getAttribute('data-i18n'); | |
const translations = { | |
"en": { | |
"title": "FramePack - Image to Video Generation", | |
"upload_image": "Upload Image", | |
"prompt": "Prompt", | |
"quick_prompts": "Quick Prompts", | |
"start_generation": "Generate", | |
"stop_generation": "Stop", | |
"use_teacache": "Use TeaCache", | |
"teacache_info": "Faster speed, but may result in slightly worse finger and hand generation.", | |
"negative_prompt": "Negative Prompt", | |
"seed": "Seed", | |
"video_length": "Video Length (max 5 seconds)", | |
"latent_window": "Latent Window Size", | |
"steps": "Inference Steps", | |
"steps_info": "Changing this value is not recommended.", | |
"cfg_scale": "CFG Scale", | |
"distilled_cfg": "Distilled CFG Scale", | |
"distilled_cfg_info": "Changing this value is not recommended.", | |
"cfg_rescale": "CFG Rescale", | |
"gpu_memory": "GPU Memory Preservation (GB) (larger means slower)", | |
"gpu_memory_info": "Set this to a larger value if you encounter OOM errors. Larger values cause slower speed.", | |
"next_latents": "Next Latents", | |
"generated_video": "Generated Video", | |
"sampling_note": "Note: Due to reversed sampling, ending actions will be generated before starting actions. If the starting action is not in the video, please wait, it will be generated later.", | |
"error_message": "Error" | |
}, | |
"ko": { | |
"title": "FramePack - 이미지에서 동영상 생성", | |
"upload_image": "이미지 업로드", | |
"prompt": "프롬프트", | |
"quick_prompts": "빠른 프롬프트 목록", | |
"start_generation": "생성 시작", | |
"stop_generation": "생성 중지", | |
"use_teacache": "TeaCache 사용", | |
"teacache_info": "더 빠른 속도를 제공하지만 손가락이나 손 생성 품질이 약간 떨어질 수 있습니다.", | |
"negative_prompt": "부정 프롬프트", | |
"seed": "랜덤 시드", | |
"video_length": "동영상 길이 (최대 5초)", | |
"latent_window": "잠재 윈도우 크기", | |
"steps": "추론 스텝 수", | |
"steps_info": "이 값을 변경하는 것은 권장되지 않습니다.", | |
"cfg_scale": "CFG 스케일", | |
"distilled_cfg": "증류된 CFG 스케일", | |
"distilled_cfg_info": "이 값을 변경하는 것은 권장되지 않습니다.", | |
"cfg_rescale": "CFG 재스케일", | |
"gpu_memory": "GPU 메모리 보존 (GB) (값이 클수록 속도가 느려짐)", | |
"gpu_memory_info": "OOM 오류가 발생하면 이 값을 더 크게 설정하십시오. 값이 클수록 속도가 느려집니다.", | |
"next_latents": "다음 잠재 변수", | |
"generated_video": "생성된 동영상", | |
"sampling_note": "주의: 역순 샘플링 때문에, 종료 동작이 시작 동작보다 먼저 생성됩니다. 시작 동작이 나타나지 않으면 기다려 주십시오.", | |
"error_message": "오류 메시지" | |
} | |
}; | |
if (translations[window.currentLang] && translations[window.currentLang][key]) { | |
if (el.tagName === 'BUTTON') { | |
el.textContent = translations[window.currentLang][key]; | |
} else if (el.tagName === 'LABEL') { | |
el.textContent = translations[window.currentLang][key]; | |
} else { | |
el.innerHTML = translations[window.currentLang][key]; | |
} | |
} | |
}); | |
// bilingual-label 처리 | |
document.querySelectorAll('.bilingual-label').forEach(el => { | |
const enText = el.getAttribute('data-en'); | |
const koText = el.getAttribute('data-ko'); | |
el.textContent = (window.currentLang === 'en') ? enText : koText; | |
}); | |
// data-lang 처리 | |
document.querySelectorAll('[data-lang]').forEach(el => { | |
el.style.display = (el.getAttribute('data-lang') === window.currentLang) ? 'block' : 'none'; | |
}); | |
} | |
document.addEventListener('DOMContentLoaded', function() { | |
setTimeout(() => { | |
// 매핑 | |
const labelMap = { | |
"Upload Image": "upload_image", | |
"이미지 업로드": "upload_image", | |
"Prompt": "prompt", | |
"프롬프트": "prompt", | |
"Quick Prompts": "quick_prompts", | |
"빠른 프롬프트 목록": "quick_prompts", | |
"Generate": "start_generation", | |
"생성 시작": "start_generation", | |
"Stop": "stop_generation", | |
"생성 중지": "stop_generation" | |
}; | |
document.querySelectorAll('label, span, button').forEach(el => { | |
const text = el.textContent.trim(); | |
if (labelMap[text]) { | |
el.setAttribute('data-i18n', labelMap[text]); | |
} | |
}); | |
const titleEl = document.querySelector('h1'); | |
if (titleEl) titleEl.setAttribute('data-i18n', 'title'); | |
toggleLanguage(); | |
}, 1000); | |
}); | |
</script> | |
""") | |
gr.HTML("<h1 data-i18n='title'>FramePack - Image to Video Generation</h1>") | |
with gr.Row(elem_classes="mobile-full-width"): | |
with gr.Column(scale=1, elem_classes="mobile-full-width"): | |
input_image = gr.Image( | |
sources='upload', | |
type="numpy", | |
label="Upload Image", | |
elem_id="input-image", | |
height=320 | |
) | |
prompt = gr.Textbox( | |
label="Prompt", | |
value='', | |
elem_id="prompt-input" | |
) | |
example_quick_prompts = gr.Dataset( | |
samples=quick_prompts, | |
label='Quick Prompts', | |
samples_per_page=1000, | |
components=[prompt] | |
) | |
example_quick_prompts.click( | |
lambda x: x[0], | |
inputs=[example_quick_prompts], | |
outputs=prompt, | |
show_progress=False, | |
queue=False | |
) | |
with gr.Row(elem_classes="button-container"): | |
start_button = gr.Button( | |
value="Generate", | |
elem_classes="start-btn", | |
elem_id="start-button", | |
variant="primary" | |
) | |
end_button = gr.Button( | |
value="Stop", | |
elem_classes="stop-btn", | |
elem_id="stop-button", | |
interactive=False | |
) | |
with gr.Group(): | |
use_teacache = gr.Checkbox( | |
label='Use TeaCache', | |
value=True, | |
info='Faster speed, but may result in slightly worse finger and hand generation.' | |
) | |
n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=False) | |
seed = gr.Number( | |
label="Seed", | |
value=31337, | |
precision=0 | |
) | |
with gr.Group(elem_classes="slider-container"): | |
total_second_length = gr.Slider( | |
label="Video Length (max 5 seconds)", | |
minimum=1, | |
maximum=5, | |
value=5, | |
step=0.1 | |
) | |
latent_window_size = gr.Slider( | |
label="Latent Window Size", | |
minimum=1, | |
maximum=33, | |
value=9, | |
step=1, | |
visible=False | |
) | |
steps = gr.Slider( | |
label="Inference Steps", | |
minimum=1, | |
maximum=100, | |
value=25, | |
step=1, | |
info='Changing this value is not recommended.' | |
) | |
cfg = gr.Slider( | |
label="CFG Scale", | |
minimum=1.0, | |
maximum=32.0, | |
value=1.0, | |
step=0.01, | |
visible=False | |
) | |
gs = gr.Slider( | |
label="Distilled CFG Scale", | |
minimum=1.0, | |
maximum=32.0, | |
value=10.0, | |
step=0.01, | |
info='Changing this value is not recommended.' | |
) | |
rs = gr.Slider( | |
label="CFG Rescale", | |
minimum=0.0, | |
maximum=1.0, | |
value=0.0, | |
step=0.01, | |
visible=False | |
) | |
gpu_memory_preservation = gr.Slider( | |
label="GPU Memory (GB)", | |
minimum=6, | |
maximum=128, | |
value=6, | |
step=0.1, | |
info="Set this to a larger value if you encounter OOM errors. Larger values cause slower speed." | |
) | |
with gr.Column(scale=1, elem_classes="mobile-full-width"): | |
preview_image = gr.Image( | |
label="Preview", | |
height=200, | |
visible=False, | |
elem_classes="preview-container" | |
) | |
result_video = gr.Video( | |
label="Generated Video", | |
autoplay=True, | |
show_share_button=True, | |
height=512, | |
loop=True, | |
elem_classes="video-container", | |
elem_id="result-video" | |
) | |
gr.HTML("<div data-i18n='sampling_note'>Note: Due to reversed sampling, ending actions will be generated before starting actions.</div>") | |
with gr.Group(elem_classes="progress-container"): | |
progress_desc = gr.Markdown('', elem_classes='no-generating-animation') | |
progress_bar = gr.HTML('', elem_classes='no-generating-animation') | |
error_message = gr.HTML('', elem_id='error-message', visible=True) | |
ips = [input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache] | |
start_button.click(fn=process, inputs=ips, outputs=[ | |
result_video, preview_image, progress_desc, progress_bar, start_button, end_button | |
]) | |
end_button.click(fn=end_process) | |
block.launch() | |
def create_error_html(error_msg, is_timeout=False): | |
en_msg = "" | |
ko_msg = "" | |
if is_timeout: | |
if "부분" in error_msg or "partial" in error_msg: | |
en_msg = "Processing timed out, but partial video has been generated." | |
ko_msg = "처리 시간이 초과되었지만 일부 동영상이 생성되었습니다." | |
else: | |
en_msg = f"Processing timed out: {error_msg}" | |
ko_msg = f"처리 시간 초과: {error_msg}" | |
elif "모델 로드" in error_msg: | |
en_msg = "Failed to load models. Possibly heavy traffic or GPU problem." | |
ko_msg = "모델 로드에 실패했습니다. 과도한 트래픽 또는 GPU 문제일 수 있습니다." | |
elif "GPU" in error_msg or "CUDA" in error_msg or "memory" in error_msg or "메모리" in error_msg: | |
en_msg = "GPU memory insufficient or error. Increase GPU memory preservation or reduce video length." | |
ko_msg = "GPU 메모리가 부족하거나 오류가 발생했습니다. GPU 메모리 보존 값을 늘리거나 동영상 길이를 줄여보세요." | |
elif "샘플링 중 오류" in error_msg or "sampling process" in error_msg: | |
if "부분" in error_msg or "partial" in error_msg: | |
en_msg = "Error during sampling, but partial video has been generated." | |
ko_msg = "샘플링 중 오류가 발생했지만 일부 동영상이 생성되었습니다." | |
else: | |
en_msg = "Error during sampling. Unable to generate video." | |
ko_msg = "샘플링 중 오류가 발생했습니다. 비디오 생성에 실패했습니다." | |
elif "네트워크" in error_msg or "Network" in error_msg or "ConnectionError" in error_msg or "ReadTimeoutError" in error_msg: | |
en_msg = "Network is unstable, model download timed out. Please try again later." | |
ko_msg = "네트워크가 불안정하여 모델 다운로드가 시간 초과되었습니다. 잠시 후 다시 시도해 주세요." | |
elif "VAE" in error_msg or "디코딩" in error_msg or "decode" in error_msg: | |
en_msg = "Error during video decoding or saving process. Try a different seed." | |
ko_msg = "비디오 디코딩/저장 중 오류가 발생했습니다. 다른 시드를 시도해보세요." | |
else: | |
en_msg = f"Processing error: {error_msg}" | |
ko_msg = f"처리 중 오류가 발생했습니다: {error_msg}" | |
return f""" | |
<div class="error-message" id="custom-error-container"> | |
<div class="error-msg-en" data-lang="en"> | |
<span class="error-icon">⚠️</span> {en_msg} | |
</div> | |
<div class="error-msg-ko" data-lang="ko"> | |
<span class="error-icon">⚠️</span> {ko_msg} | |
</div> | |
</div> | |
<script> | |
(function() {{ | |
const errorContainer = document.getElementById('custom-error-container'); | |
if (errorContainer) {{ | |
const currentLang = window.currentLang || 'en'; | |
const errMsgs = errorContainer.querySelectorAll('[data-lang]'); | |
errMsgs.forEach(msg => {{ | |
msg.style.display = (msg.getAttribute('data-lang') === currentLang) ? 'block' : 'none'; | |
}}); | |
const defaultErrorElements = document.querySelectorAll('.error'); | |
defaultErrorElements.forEach(el => {{ | |
el.style.display = 'none'; | |
}}); | |
}} | |
}})(); | |
</script> | |
""" | |