scholar / apps /journal.py
giswqs's picture
Update year
cc5bd12
import os
import json
import dimcli
import pandas as pd
import plotly.express as px
import streamlit as st
import scholarpy
import leafmap.foliumap as leafmap
import datetime
current_year = datetime.datetime.now().year
if "dsl" not in st.session_state:
st.session_state["dsl"] = scholarpy.Dsl()
# create output data folder
FOLDER_NAME = "data"
if not (os.path.exists(FOLDER_NAME)):
os.mkdir(FOLDER_NAME)
def save(df, filename_dot_csv):
df.to_csv(FOLDER_NAME + "/" + filename_dot_csv, index=False)
def read(filename_dot_csv):
df = pd.read_csv(FOLDER_NAME + "/" + filename_dot_csv)
return df
@st.cache_data
def get_token():
return os.environ.get("DIM_TOKEN")
@st.cache_data
def get_journals():
with open("data/journals.json") as f:
journals = json.load(f)
return journals
@st.cache_data
def read_excel(sheet_name):
df = pd.read_excel(
"data/journals.xlsx", sheet_name=sheet_name, index_col=False, engine="openpyxl"
)
df.set_index("Rank", inplace=True)
return df
def app():
st.title("Search Journals")
dsl = st.session_state["dsl"]
search_type = st.radio(
"Select a search type",
["Search by journal title", "List Google Scholar journal categories"],
)
if search_type == "Search by journal title":
row1_col1, row1_col2, row1_col3, _ = st.columns([1, 1, 2, 1])
with row1_col1:
name = st.text_input("Enter a journal title")
with row1_col2:
exact_match = st.checkbox("Exact match")
with row1_col3:
options = [
"book",
"book_series",
"proceeding",
"journal",
"preprint_platform",
]
types = st.multiselect(
"Select journal types", options, ["journal", "book_series"]
)
if name:
result = dsl.search_journal_by_title(name, exact_match=exact_match)
if result is not None:
titles = result.as_dataframe()
titles = titles[titles["type"].isin(types)]
titles.sort_values("title", inplace=True)
else:
titles = pd.DataFrame()
# titles = titles.astype({"start_year": int})
if not titles.empty:
markdown = f"""
Returned Journals: {len(titles)}
"""
st.markdown(markdown)
st.dataframe(titles)
titles["uid"] = (
titles["id"] + " | " + titles["type"] + " | " + titles["title"]
)
row2_col1, row2_col2, row2_col3, row2_col4, row2_col5 = st.columns(
[2.4, 1, 0.6, 1, 1]
)
with row2_col1:
title = st.selectbox(
"Select a journal title", titles["uid"].values.tolist()
)
with row2_col2:
keyword = st.text_input("Enter a keyword to search for")
with row2_col3:
exact_match = st.checkbox("Exact match", True)
with row2_col4:
scope = st.selectbox(
"Select a search scope",
[
"authors",
"concepts",
"full_data",
"full_data_exact",
"title_abstract_only",
"title_only",
],
index=5,
)
with row2_col5:
years = st.slider(
"Select the start and end year:",
1950,
current_year,
(1980, current_year),
)
if title:
journal_id = title.split(" | ")[0]
if keyword:
pubs = dsl.search_pubs_by_keyword(
keyword, exact_match, scope, years[0], years[1], journal_id
)
else:
pubs = dsl.search_pubs_by_journal_id(
journal_id, years[0], years[1]
)
pubs_df = pubs.as_dataframe()
if pubs_df is not None and (not pubs_df.empty):
st.write(
f"Total number of pulications: {pubs.count_total:,}. Display {min(pubs.count_total, 1000)} publications below."
)
try:
st.dataframe(pubs_df)
except Exception as e:
st.dataframe(scholarpy.json_to_df(pubs))
# st.error("An error occurred: " + str(e))
leafmap.st_download_button(
"Download data", pubs_df, csv_sep="\t"
)
else:
st.text("No results found")
elif search_type == "List Google Scholar journal categories":
st.markdown(
"""
The journal categories are adopted from [Google Scholar](https://scholar.google.com/citations?view_op=top_venues&hl=en&inst=9897619243961157265).
See the list of journals [here](https://docs.google.com/spreadsheets/d/1uCEi3TsJCWl9QEZimvjlM8wjt7hNq3QvMqHGeT44HXQ/edit?usp=sharing).
"""
)
st.session_state["orcids"] = None
# dsl = st.session_state["dsl"]
# token = get_token()
# dimcli.login(key=token, endpoint="https://app.dimensions.ai")
# dsl = dimcli.Dsl()
categories = get_journals()
row1_col1, row1_col2, _, row1_col3 = st.columns([1, 1, 0.05, 1])
with row1_col1:
category = st.selectbox("Select a category:", categories.keys())
if category:
with row1_col2:
journal = st.selectbox("Select a journal:", categories[category].keys())
with row1_col3:
years = st.slider(
"Select the start and end year:",
1950,
current_year,
(1980, current_year),
)
if journal:
pubs = read_excel(sheet_name=category)
with st.expander("Show journal metrics"):
st.dataframe(pubs)
journal_id = categories[category][journal]
if journal_id is not None and str(journal_id).startswith("jour"):
q_template = """search publications where
journal.id="{}" and
year>={} and
year<={}
return publications[id+title+doi+year+authors+type+pages+journal+issue+volume+altmetric+times_cited]
limit 1000"""
q = q_template.format(journal_id, years[0], years[1])
else:
q_template = """search publications where
journal.title="{}" and
year>={} and
year<={}
return publications[id+title+doi+year+authors+type+pages+journal+issue+volume+altmetric+times_cited]
limit 1000"""
q = q_template.format(journal, years[0], years[1])
pubs = dsl.query(q)
if pubs.count_total > 0:
st.header("Publications")
st.write(
f"Total number of pulications: {pubs.count_total:,}. Display 1,000 publications below."
)
df_pubs = pubs.as_dataframe()
save(df_pubs, "publications.csv")
df_pubs = read("publications.csv")
st.dataframe(df_pubs)
st.header("Authors")
authors = pubs.as_dataframe_authors()
st.write(
f"Total number of authors of the 1,000 pubs shown above: {authors.shape[0]:,}"
)
save(authors, "authors.csv")
df_authors = read("authors.csv")
st.dataframe(df_authors)
df_authors_orcid = df_authors[~df_authors["orcid"].isna()]
# st.dataframe(df_authors_orcid)
orcids = list(set(df_authors_orcid["orcid"].values.tolist()))
orcids = [i[2:21] for i in orcids]
orcids.sort()
# st.write(orcids)
st.session_state["orcids"] = orcids
st.header("Affiliations")
affiliations = pubs.as_dataframe_authors_affiliations()
st.write(
f"Total number of affiliations of the 1,000 pubs shown above: {affiliations.shape[0]:,}"
)
save(affiliations, "affiliations.csv")
df_affiliations = read("affiliations.csv")
st.dataframe(df_affiliations)
researchers = authors.query("researcher_id!=''")
#
df_researchers = pd.DataFrame(
{
"measure": [
"Authors in total (non unique)",
"Authors with a researcher ID",
"Authors with a researcher ID (unique)",
],
"count": [
len(authors),
len(researchers),
researchers["researcher_id"].nunique(),
],
}
)
fig_researchers = px.bar(
df_researchers,
x="measure",
y="count",
title=f"Author Research ID stats for {journal} ({years[0]}-{years[1]})",
)
orcids = authors.query("orcid!=''")
#
df_orcids = pd.DataFrame(
{
"measure": [
"Authors in total (non unique)",
"Authors with a ORCID",
"Authors with a ORCID (unique)",
],
"count": [
len(authors),
len(orcids),
orcids["orcid"].nunique(),
],
}
)
fig_orcids = px.bar(
df_orcids,
x="measure",
y="count",
title=f"Author ORCID stats for {journal} ({years[0]}-{years[1]})",
)
st.header("Stats")
row2_col1, row1_col2 = st.columns(2)
with row2_col1:
st.plotly_chart(fig_researchers)
with row1_col2:
st.plotly_chart(fig_orcids)
else:
st.warning("No publications found")