|
import os
|
|
import re
|
|
from typing import List, Tuple, Optional, Dict
|
|
import logging
|
|
|
|
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
|
import fitz
|
|
import shapely.geometry as sg
|
|
from shapely.geometry.base import BaseGeometry
|
|
from shapely.validation import explain_validity
|
|
import concurrent.futures
|
|
|
|
|
|
|
|
DEFAULT_PROMPT = """使用markdown语法,将图片中识别到的文字转换为markdown格式输出。你必须做到:
|
|
1. 输出和使用识别到的图片的相同的语言,例如,识别到英语的字段,输出的内容必须是英语。
|
|
2. 不要解释和输出无关的文字,直接输出图片中的内容。例如,严禁输出 “以下是我根据图片内容生成的markdown文本:”这样的例子,而是应该直接输出markdown。
|
|
3. 内容不要包含在```markdown ```中、段落公式使用 $$ $$ 的形式、行内公式使用 $ $ 的形式、忽略掉长直线、忽略掉页码。
|
|
再次强调,不要解释和输出无关的文字,直接输出图片中的内容。
|
|
"""
|
|
DEFAULT_RECT_PROMPT = """图片中用红色框和名称(%s)标注出了一些区域。如果区域是表格或者图片,使用 ![]() 的形式插入到输出内容中,否则直接输出文字内容。
|
|
"""
|
|
DEFAULT_ROLE_PROMPT = """你是一个PDF文档解析器,使用markdown和latex语法输出图片的内容。
|
|
"""
|
|
|
|
|
|
def _is_near(rect1: BaseGeometry, rect2: BaseGeometry, distance: float = 20) -> bool:
|
|
"""
|
|
Check if two rectangles are near each other if the distance between them is less than the target.
|
|
"""
|
|
return rect1.buffer(0.1).distance(rect2.buffer(0.1)) < distance
|
|
|
|
|
|
def _is_horizontal_near(rect1: BaseGeometry, rect2: BaseGeometry, distance: float = 100) -> bool:
|
|
"""
|
|
Check if two rectangles are near horizontally if one of them is a horizontal line.
|
|
"""
|
|
result = False
|
|
if abs(rect1.bounds[3] - rect1.bounds[1]) < 0.1 or abs(rect2.bounds[3] - rect2.bounds[1]) < 0.1:
|
|
if abs(rect1.bounds[0] - rect2.bounds[0]) < 0.1 and abs(rect1.bounds[2] - rect2.bounds[2]) < 0.1:
|
|
result = abs(rect1.bounds[3] - rect2.bounds[3]) < distance
|
|
return result
|
|
|
|
|
|
def _union_rects(rect1: BaseGeometry, rect2: BaseGeometry) -> BaseGeometry:
|
|
"""
|
|
Union two rectangles.
|
|
"""
|
|
return sg.box(*(rect1.union(rect2).bounds))
|
|
|
|
|
|
def _merge_rects(rect_list: List[BaseGeometry], distance: float = 20, horizontal_distance: Optional[float] = None) -> \
|
|
List[BaseGeometry]:
|
|
"""
|
|
Merge rectangles in the list if the distance between them is less than the target.
|
|
"""
|
|
merged = True
|
|
while merged:
|
|
merged = False
|
|
new_rect_list = []
|
|
while rect_list:
|
|
rect = rect_list.pop(0)
|
|
for other_rect in rect_list:
|
|
if _is_near(rect, other_rect, distance) or (
|
|
horizontal_distance and _is_horizontal_near(rect, other_rect, horizontal_distance)):
|
|
rect = _union_rects(rect, other_rect)
|
|
rect_list.remove(other_rect)
|
|
merged = True
|
|
new_rect_list.append(rect)
|
|
rect_list = new_rect_list
|
|
return rect_list
|
|
|
|
|
|
def _adsorb_rects_to_rects(source_rects: List[BaseGeometry], target_rects: List[BaseGeometry], distance: float = 10) -> \
|
|
Tuple[List[BaseGeometry], List[BaseGeometry]]:
|
|
"""
|
|
Adsorb a set of rectangles to another set of rectangles.
|
|
"""
|
|
new_source_rects = []
|
|
for text_area_rect in source_rects:
|
|
adsorbed = False
|
|
for index, rect in enumerate(target_rects):
|
|
if _is_near(text_area_rect, rect, distance):
|
|
rect = _union_rects(text_area_rect, rect)
|
|
target_rects[index] = rect
|
|
adsorbed = True
|
|
break
|
|
if not adsorbed:
|
|
new_source_rects.append(text_area_rect)
|
|
return new_source_rects, target_rects
|
|
|
|
|
|
def _parse_rects(page: fitz.Page) -> List[Tuple[float, float, float, float]]:
|
|
"""
|
|
Parse drawings in the page and merge adjacent rectangles.
|
|
"""
|
|
|
|
|
|
drawings = page.get_drawings()
|
|
|
|
|
|
is_short_line = lambda x: abs(x['rect'][3] - x['rect'][1]) < 1 and abs(x['rect'][2] - x['rect'][0]) < 30
|
|
drawings = [drawing for drawing in drawings if not is_short_line(drawing)]
|
|
|
|
|
|
rect_list = [sg.box(*drawing['rect']) for drawing in drawings]
|
|
|
|
|
|
images = page.get_image_info()
|
|
image_rects = [sg.box(*image['bbox']) for image in images]
|
|
|
|
|
|
rect_list += image_rects
|
|
|
|
merged_rects = _merge_rects(rect_list, distance=10, horizontal_distance=100)
|
|
merged_rects = [rect for rect in merged_rects if explain_validity(rect) == 'Valid Geometry']
|
|
|
|
|
|
is_large_content = lambda x: (len(x[4]) / max(1, len(x[4].split('\n')))) > 5
|
|
small_text_area_rects = [sg.box(*x[:4]) for x in page.get_text('blocks') if not is_large_content(x)]
|
|
large_text_area_rects = [sg.box(*x[:4]) for x in page.get_text('blocks') if is_large_content(x)]
|
|
_, merged_rects = _adsorb_rects_to_rects(large_text_area_rects, merged_rects, distance=0.1)
|
|
_, merged_rects = _adsorb_rects_to_rects(small_text_area_rects, merged_rects, distance=5)
|
|
|
|
|
|
merged_rects = _merge_rects(merged_rects, distance=10)
|
|
|
|
|
|
merged_rects = [rect for rect in merged_rects if rect.bounds[2] - rect.bounds[0] > 20 and rect.bounds[3] - rect.bounds[1] > 20]
|
|
|
|
return [rect.bounds for rect in merged_rects]
|
|
|
|
|
|
def _parse_pdf_to_images(pdf_path: str, output_dir: str = './') -> List[Tuple[str, List[str]]]:
|
|
"""
|
|
Parse PDF to images and save to output_dir.
|
|
"""
|
|
|
|
pdf_document = fitz.open(pdf_path)
|
|
image_infos = []
|
|
|
|
for page_index, page in enumerate(pdf_document):
|
|
logging.info(f'parse page: {page_index}')
|
|
rect_images = []
|
|
rects = _parse_rects(page)
|
|
for index, rect in enumerate(rects):
|
|
fitz_rect = fitz.Rect(rect)
|
|
|
|
pix = page.get_pixmap(clip=fitz_rect, matrix=fitz.Matrix(4, 4))
|
|
name = f'{page_index}_{index}.png'
|
|
pix.save(os.path.join(output_dir, name))
|
|
rect_images.append(name)
|
|
|
|
big_fitz_rect = fitz.Rect(fitz_rect.x0 - 1, fitz_rect.y0 - 1, fitz_rect.x1 + 1, fitz_rect.y1 + 1)
|
|
|
|
page.draw_rect(big_fitz_rect, color=(1, 0, 0), width=1)
|
|
|
|
|
|
|
|
text_x = fitz_rect.x0 + 2
|
|
text_y = fitz_rect.y0 + 10
|
|
text_rect = fitz.Rect(text_x, text_y - 9, text_x + 80, text_y + 2)
|
|
|
|
page.draw_rect(text_rect, color=(1, 1, 1), fill=(1, 1, 1))
|
|
|
|
page.insert_text((text_x, text_y), name, fontsize=10, color=(1, 0, 0))
|
|
page_image_with_rects = page.get_pixmap(matrix=fitz.Matrix(3, 3))
|
|
page_image = os.path.join(output_dir, f'{page_index}.png')
|
|
page_image_with_rects.save(page_image)
|
|
image_infos.append((page_image, rect_images))
|
|
|
|
pdf_document.close()
|
|
return image_infos
|
|
|
|
|
|
def _gpt_parse_images(
|
|
image_infos: List[Tuple[str, List[str]]],
|
|
prompt_dict: Optional[Dict] = None,
|
|
output_dir: str = './',
|
|
api_key: Optional[str] = None,
|
|
base_url: Optional[str] = None,
|
|
model: str = 'gpt-4o',
|
|
verbose: bool = False,
|
|
gpt_worker: int = 1,
|
|
**args
|
|
) -> str:
|
|
"""
|
|
Parse images to markdown content.
|
|
"""
|
|
from GeneralAgent import Agent
|
|
|
|
if isinstance(prompt_dict, dict) and 'prompt' in prompt_dict:
|
|
prompt = prompt_dict['prompt']
|
|
logging.info("prompt is provided, using user prompt.")
|
|
else:
|
|
prompt = DEFAULT_PROMPT
|
|
logging.info("prompt is not provided, using default prompt.")
|
|
if isinstance(prompt_dict, dict) and 'rect_prompt' in prompt_dict:
|
|
rect_prompt = prompt_dict['rect_prompt']
|
|
logging.info("rect_prompt is provided, using user prompt.")
|
|
else:
|
|
rect_prompt = DEFAULT_RECT_PROMPT
|
|
logging.info("rect_prompt is not provided, using default prompt.")
|
|
if isinstance(prompt_dict, dict) and 'role_prompt' in prompt_dict:
|
|
role_prompt = prompt_dict['role_prompt']
|
|
logging.info("role_prompt is provided, using user prompt.")
|
|
else:
|
|
role_prompt = DEFAULT_ROLE_PROMPT
|
|
logging.info("role_prompt is not provided, using default prompt.")
|
|
|
|
def _process_page(index: int, image_info: Tuple[str, List[str]]) -> Tuple[int, str]:
|
|
logging.info(f'gpt parse page: {index}')
|
|
agent = Agent(role=role_prompt, api_key=api_key, base_url=base_url, disable_python_run=True, model=model, **args)
|
|
page_image, rect_images = image_info
|
|
local_prompt = prompt
|
|
if rect_images:
|
|
local_prompt += rect_prompt + ', '.join(rect_images)
|
|
content = agent.run([local_prompt, {'image': page_image}], display=verbose)
|
|
return index, content
|
|
|
|
contents = [None] * len(image_infos)
|
|
with concurrent.futures.ThreadPoolExecutor(max_workers=gpt_worker) as executor:
|
|
futures = [executor.submit(_process_page, index, image_info) for index, image_info in enumerate(image_infos)]
|
|
for future in concurrent.futures.as_completed(futures):
|
|
index, content = future.result()
|
|
|
|
|
|
if '```markdown' in content:
|
|
content = content.replace('```markdown\n', '')
|
|
last_backticks_pos = content.rfind('```')
|
|
if last_backticks_pos != -1:
|
|
content = content[:last_backticks_pos] + content[last_backticks_pos + 3:]
|
|
|
|
contents[index] = content
|
|
|
|
output_path = os.path.join(output_dir, 'output.md')
|
|
with open(output_path, 'w', encoding='utf-8') as f:
|
|
f.write('\n\n'.join(contents))
|
|
|
|
return '\n\n'.join(contents)
|
|
|
|
|
|
def parse_pdf(
|
|
pdf_path: str,
|
|
output_dir: str = './',
|
|
prompt: Optional[Dict] = None,
|
|
api_key: Optional[str] = None,
|
|
base_url: Optional[str] = None,
|
|
model: str = 'gpt-4o',
|
|
verbose: bool = False,
|
|
gpt_worker: int = 1,
|
|
**args
|
|
) -> Tuple[str, List[str]]:
|
|
"""
|
|
Parse a PDF file to a markdown file.
|
|
"""
|
|
if not os.path.exists(output_dir):
|
|
os.makedirs(output_dir)
|
|
|
|
image_infos = _parse_pdf_to_images(pdf_path, output_dir=output_dir)
|
|
content = _gpt_parse_images(
|
|
image_infos=image_infos,
|
|
output_dir=output_dir,
|
|
prompt_dict=prompt,
|
|
api_key=api_key,
|
|
base_url=base_url,
|
|
model=model,
|
|
verbose=verbose,
|
|
gpt_worker=gpt_worker,
|
|
**args
|
|
)
|
|
|
|
all_rect_images = []
|
|
|
|
if not verbose:
|
|
for page_image, rect_images in image_infos:
|
|
if os.path.exists(page_image):
|
|
os.remove(page_image)
|
|
all_rect_images.extend(rect_images)
|
|
return content, all_rect_images |