hf-pr-agent / app.py
Gianpaolo Macario
refactor: enhance webhook processing and add health check endpoint
988d01d
import os
import re
import json
from datetime import datetime
from typing import List, Dict, Any, Optional, Literal
from fastapi import FastAPI, Request, BackgroundTasks
from fastapi.middleware.cors import CORSMiddleware
import gradio as gr
import uvicorn
from pydantic import BaseModel
from huggingface_hub.inference._mcp.agent import Agent
from dotenv import load_dotenv
load_dotenv()
# Configuration
WEBHOOK_SECRET = os.getenv("WEBHOOK_SECRET", "your-webhook-secret")
HF_TOKEN = os.getenv("HF_TOKEN")
HF_MODEL = os.getenv("HF_MODEL", "microsoft/DialoGPT-medium")
# Use a valid provider literal from the documentation
DEFAULT_PROVIDER: Literal["hf-inference"] = "hf-inference"
HF_PROVIDER = os.getenv("HF_PROVIDER", DEFAULT_PROVIDER)
# Simple storage for processed tag operations
tag_operations_store: List[Dict[str, Any]] = []
# Agent instance
agent_instance: Optional[Agent] = None
# Common ML tags that we recognize for auto-tagging
RECOGNIZED_TAGS = {
"pytorch",
"tensorflow",
"jax",
"transformers",
"diffusers",
"text-generation",
"text-classification",
"question-answering",
"text-to-image",
"image-classification",
"object-detection",
" ",
"fill-mask",
"token-classification",
"translation",
"summarization",
"feature-extraction",
"sentence-similarity",
"zero-shot-classification",
"image-to-text",
"automatic-speech-recognition",
"audio-classification",
"voice-activity-detection",
"depth-estimation",
"image-segmentation",
"video-classification",
"reinforcement-learning",
"tabular-classification",
"tabular-regression",
"time-series-forecasting",
"graph-ml",
"robotics",
"computer-vision",
"nlp",
"cv",
"multimodal",
}
class WebhookEvent(BaseModel):
event: Dict[str, str] # Contains action and scope information
comment: Dict[str, Any] # Comment content and metadata
discussion: Dict[str, Any] # Discussion information
repo: Dict[str, str] # Repository details
app = FastAPI(title="HF Tagging Bot")
app.add_middleware(CORSMiddleware, allow_origins=["*"])
async def get_agent():
"""Get or create Agent instance"""
print("πŸ€– get_agent() called...")
global agent_instance
if agent_instance is None and HF_TOKEN:
print("πŸ”§ Creating new Agent instance...")
print(f"πŸ”‘ HF_TOKEN present: {bool(HF_TOKEN)}")
print(f"πŸ€– Model: {HF_MODEL}")
print(f"πŸ”— Provider: {DEFAULT_PROVIDER}")
try:
agent_instance = Agent(
model=HF_MODEL,
provider=DEFAULT_PROVIDER,
api_key=HF_TOKEN,
servers=[
{
"type": "stdio",
"config": {
"command": "python",
"args": ["mcp_server.py"],
"cwd": ".", # Ensure correct working directory
"env": {"HF_TOKEN": HF_TOKEN} if HF_TOKEN else {},
},
}
],
)
print("βœ… Agent instance created successfully")
print("πŸ”§ Loading tools...")
await agent_instance.load_tools()
print("βœ… Tools loaded successfully")
except Exception as e:
print(f"❌ Error creating/loading agent: {str(e)}")
agent_instance = None
elif agent_instance is None:
print("❌ No HF_TOKEN available, cannot create agent")
else:
print("βœ… Using existing agent instance")
return agent_instance
def extract_tags_from_text(text: str) -> List[str]:
"""Extract potential tags from discussion text"""
text_lower = text.lower()
# Look for explicit tag mentions like "tag: pytorch" or "#pytorch"
explicit_tags = []
# Pattern 1: "tag: something" or "tags: something"
tag_pattern = r"tags?:\s*([a-zA-Z0-9-_,\s]+)"
matches = re.findall(tag_pattern, text_lower)
for match in matches:
# Split by comma and clean up
tags = [tag.strip() for tag in match.split(",")]
explicit_tags.extend(tags)
# Pattern 2: "#hashtag" style
hashtag_pattern = r"#([a-zA-Z0-9-_]+)"
hashtag_matches = re.findall(hashtag_pattern, text_lower)
explicit_tags.extend(hashtag_matches)
# Pattern 3: Look for recognized tags mentioned in natural text
mentioned_tags = []
for tag in RECOGNIZED_TAGS:
if tag in text_lower:
mentioned_tags.append(tag)
# Combine and deduplicate
all_tags = list(set(explicit_tags + mentioned_tags))
# Filter to only include recognized tags or explicitly mentioned ones
valid_tags = []
for tag in all_tags:
if tag in RECOGNIZED_TAGS or tag in explicit_tags:
valid_tags.append(tag)
return valid_tags
# async def process_webhook_comment(webhook_data: Dict[str, Any]):
# """Process webhook to detect and add tags"""
# print("🏷️ Starting process_webhook_comment...")
# try:
# comment_content = webhook_data["comment"]["content"]
# discussion_title = webhook_data["discussion"]["title"]
# repo_name = webhook_data["repo"]["name"]
# discussion_num = webhook_data["discussion"]["num"]
# # Author is an object with "id" field
# comment_author = webhook_data["comment"]["author"].get("id", "unknown")
# print(f"πŸ“ Comment content: {comment_content}")
# print(f"πŸ“° Discussion title: {discussion_title}")
# print(f"πŸ“¦ Repository: {repo_name}")
# # Extract potential tags from the comment and discussion title
# comment_tags = extract_tags_from_text(comment_content)
# title_tags = extract_tags_from_text(discussion_title)
# all_tags = list(set(comment_tags + title_tags))
# print(f"πŸ” Comment tags found: {comment_tags}")
# print(f"πŸ” Title tags found: {title_tags}")
# print(f"🏷️ All unique tags: {all_tags}")
# result_messages = []
# if not all_tags:
# msg = "No recognizable tags found in the discussion."
# print(f"❌ {msg}")
# result_messages.append(msg)
# else:
# print("πŸ€– Getting agent instance...")
# agent = await get_agent()
# if not agent:
# msg = "Error: Agent not configured (missing HF_TOKEN)"
# print(f"❌ {msg}")
# result_messages.append(msg)
# else:
# print("βœ… Agent instance obtained successfully")
# # Process all tags in a single conversation with the agent
# try:
# # Create a comprehensive prompt for the agent
# user_prompt = f"""
# I need to add the following tags to the repository '{repo_name}': {", ".join(all_tags)}
# For each tag, please:
# 1. Check if the tag already exists on the repository using get_current_tags
# 2. If the tag doesn't exist, add it using add_new_tag
# 3. Provide a summary of what was done for each tag
# Please process all {len(all_tags)} tags: {", ".join(all_tags)}
# """
# print("πŸ’¬ Sending comprehensive prompt to agent...")
# print(f"πŸ“ Prompt: {user_prompt}")
# # Let the agent handle the entire conversation
# conversation_result = []
# try:
# async for item in agent.run(user_prompt):
# # The agent yields different types of items
# item_str = str(item)
# conversation_result.append(item_str)
# # Log important events
# if (
# "tool_call" in item_str.lower()
# or "function" in item_str.lower()
# ):
# print(f"πŸ”§ Agent using tools: {item_str[:200]}...")
# elif "content" in item_str and len(item_str) < 500:
# print(f"πŸ’­ Agent response: {item_str}")
# # Extract the final response from the conversation
# full_response = " ".join(conversation_result)
# print(f"πŸ“‹ Agent conversation completed successfully")
# # Try to extract meaningful results for each tag
# for tag in all_tags:
# tag_mentioned = tag.lower() in full_response.lower()
# if (
# "already exists" in full_response.lower()
# and tag_mentioned
# ):
# msg = f"Tag '{tag}': Already exists"
# elif (
# "pr" in full_response.lower()
# or "pull request" in full_response.lower()
# ):
# if tag_mentioned:
# msg = f"Tag '{tag}': PR created successfully"
# else:
# msg = (
# f"Tag '{tag}': Processed "
# "(PR may have been created)"
# )
# elif "success" in full_response.lower() and tag_mentioned:
# msg = f"Tag '{tag}': Successfully processed"
# elif "error" in full_response.lower() and tag_mentioned:
# msg = f"Tag '{tag}': Error during processing"
# else:
# msg = f"Tag '{tag}': Processed by agent"
# print(f"βœ… Result for tag '{tag}': {msg}")
# result_messages.append(msg)
# except Exception as agent_error:
# print(f"⚠️ Agent streaming failed: {str(agent_error)}")
# print("πŸ”„ Falling back to direct MCP tool calls...")
# # Import the MCP server functions directly as fallback
# try:
# import sys
# import importlib.util
# # Load the MCP server module
# spec = importlib.util.spec_from_file_location(
# "mcp_server", "./mcp_server.py"
# )
# mcp_module = importlib.util.module_from_spec(spec) # type: ignore
# spec.loader.exec_module(mcp_module) # type: ignore
# # Use the MCP tools directly for each tag
# for tag in all_tags:
# try:
# print(
# f"πŸ”§ Directly calling get_current_tags for '{tag}'"
# )
# current_tags_result = mcp_module.get_current_tags(
# repo_name
# )
# print(
# f"πŸ“„ Current tags result: {current_tags_result}"
# )
# # Parse the JSON result
# import json
# tags_data = json.loads(current_tags_result)
# if tags_data.get("status") == "success":
# current_tags = tags_data.get("current_tags", [])
# if tag in current_tags:
# msg = f"Tag '{tag}': Already exists"
# print(f"βœ… {msg}")
# else:
# print(
# f"πŸ”§ Directly calling add_new_tag for '{tag}'"
# )
# add_result = mcp_module.add_new_tag(
# repo_name, tag
# )
# print(f"πŸ“„ Add tag result: {add_result}")
# add_data = json.loads(add_result)
# if add_data.get("status") == "success":
# pr_url = add_data.get("pr_url", "")
# msg = f"Tag '{tag}': PR created - {pr_url}"
# elif (
# add_data.get("status")
# == "already_exists"
# ):
# msg = f"Tag '{tag}': Already exists"
# else:
# msg = f"Tag '{tag}': {add_data.get('message', 'Processed')}"
# print(f"βœ… {msg}")
# else:
# error_msg = tags_data.get(
# "error", "Unknown error"
# )
# msg = f"Tag '{tag}': Error - {error_msg}"
# print(f"❌ {msg}")
# result_messages.append(msg)
# except Exception as direct_error:
# error_msg = f"Tag '{tag}': Direct call error - {str(direct_error)}"
# print(f"❌ {error_msg}")
# result_messages.append(error_msg)
# except Exception as fallback_error:
# error_msg = (
# f"Fallback approach failed: {str(fallback_error)}"
# )
# print(f"❌ {error_msg}")
# result_messages.append(error_msg)
# except Exception as e:
# error_msg = f"Error during agent processing: {str(e)}"
# print(f"❌ {error_msg}")
# result_messages.append(error_msg)
# # Store the interaction
# base_url = "https://huggingface.co"
# discussion_url = f"{base_url}/{repo_name}/discussions/{discussion_num}"
# interaction = {
# "timestamp": datetime.now().isoformat(),
# "repo": repo_name,
# "discussion_title": discussion_title,
# "discussion_num": discussion_num,
# "discussion_url": discussion_url,
# "original_comment": comment_content,
# "comment_author": comment_author,
# "detected_tags": all_tags,
# "results": result_messages,
# }
# tag_operations_store.append(interaction)
# final_result = " | ".join(result_messages)
# print(f"πŸ’Ύ Stored interaction and returning result: {final_result}")
# return final_result
# except Exception as e:
# error_msg = f"❌ Fatal error in process_webhook_comment: {str(e)}"
# print(error_msg)
# return error_msg
@app.post("/webhook")
async def webhook_handler(request: Request, background_tasks: BackgroundTasks):
"""
Handle incoming webhooks from Hugging Face Hub
Following the pattern from: https://raw.githubusercontent.com/huggingface/hub-docs/refs/heads/main/docs/hub/webhooks-guide-discussion-bot.md
"""
print("πŸ”” Webhook received!")
# Step 1: Validate webhook secret (security)
webhook_secret = request.headers.get("X-Webhook-Secret")
if webhook_secret != WEBHOOK_SECRET:
print("❌ Invalid webhook secret")
return {"error": "Invalid webhook secret"}, 400
# Step 2: Parse webhook data
try:
webhook_data = await request.json()
print(f"πŸ“₯ Webhook data: {json.dumps(webhook_data, indent=2)}")
except Exception as e:
print(f"❌ Error parsing webhook data: {str(e)}")
return {"error": "invalid JSON"}, 400
# Step 3: Validate event structure
event = webhook_data.get("event", {})
if not event:
print("❌ No event data in webhook")
return {"error": "missing event data"}, 400
scope = event.get("scope")
action = event.get("action")
print(f"πŸ” Event details - scope: {scope}, action: {action}")
# Step 4: Check if this is a discussion comment creation
# Following the webhook guide pattern:
if (
action == "create" and
scope == "discussion.comment"
):
print("βœ… Valid discussion comment creation event")
# Process in background to return quickly to Hub
background_tasks.add_task(process_webhook_comment, webhook_data)
return {
"status": "accepted",
"message": "Comment processing started",
"timestamp": datetime.now().isoformat()
}
else:
print(f"ℹ️ Ignoring event: action={event.get('action')}, scope={event.get('scope')}")
return {
"status": "ignored",
"reason": "Not a discussion comment creation"
}
async def process_webhook_comment(webhook_data: Dict[str, Any]):
"""
Process webhook comment to detect and add tags
Integrates with our MCP client for Hub interactions
"""
print("🏷️ Starting process_webhook_comment...")
try:
# Extract comment and repository information
comment_content = webhook_data["comment"]["content"]
discussion_title = webhook_data["discussion"]["title"]
repo_name = webhook_data["repo"]["name"]
discussion_num = webhook_data["discussion"]["num"]
comment_author = webhook_data["comment"]["author"].get("id", "unknown")
print(f"πŸ“ Comment from {comment_author}: {comment_content}")
print(f"πŸ“° Discussion: {discussion_title}")
print(f"πŸ“¦ Repository: {repo_name}")
except Exception as e:
print(f"❌ Error parsing webhook data: {str(e)}")
return {"error": "invalid JSON"}, 400
# Extract potential tags from comment and title
comment_tags = extract_tags_from_text(comment_content)
title_tags = extract_tags_from_text(discussion_title)
all_tags = list(set(comment_tags + title_tags))
print(f"πŸ” Found tags: {all_tags}")
# Store operation for monitoring
operation = {
"timestamp": datetime.now().isoformat(),
"repo_name": repo_name,
"discussion_num": discussion_num,
"comment_author": comment_author,
"extracted_tags": all_tags,
"comment_preview": comment_content[:100] + "..." if len(comment_content) > 100 else comment_content,
"status": "processing"
}
tag_operations_store.append(operation)
if not all_tags:
operation["status"] = "no_tags"
operation["message"] = "No recognizable tags found"
print("❌ No tags found to process")
return
# Get MCP agent for tag processing
agent = await get_agent()
if not agent:
operation["status"] = "error"
operation["message"] = "Agent not configured (missing HF_TOKEN)"
print("❌ No agent available")
return
# Process each extracted tag
operation["results"] = []
for tag in all_tags:
try:
print(f"πŸ€– Processing tag '{tag}' for repo '{repo_name}'")
# Create prompt for agent to handle tag processing
prompt = f"""
Analyze the repository '{repo_name}' and determine if the tag '{tag}' should be added.
First, check the current tags using get_current_tags.
If '{tag}' is not already present and it's a valid tag, add it using add_new_tag.
Repository: {repo_name}
Tag to process: {tag}
Provide a clear summary of what was done.
"""
response = await agent.run(prompt) # type: ignore
print(f"πŸ€– Agent response for '{tag}': {response}")
# Parse response and store result
tag_result = {
"tag": tag,
"response": response,
"timestamp": datetime.now().isoformat()
}
operation["results"].append(tag_result)
except Exception as e:
error_msg = f"❌ Error processing tag '{tag}': {str(e)}"
print(error_msg)
operation["results"].append({
"tag": tag,
"error": str(e),
"timestamp": datetime.now().isoformat()
})
operation["status"] = "completed"
print(f"βœ… Completed processing {len(all_tags)} tags")
@app.get("/")
async def root():
"""Root endpoint with basic information"""
return {
"name": "HF Tagging Bot",
"status": "running",
"description": "Webhook listener for automatic model tagging",
"endpoints": {
"webhook": "/webhook",
"health": "/health",
"operations": "/operations"
}
}
@app.get("/health")
async def health_check():
"""Health check endpoint for monitoring"""
agent = await get_agent()
return {
"status": "healthy",
"timestamp": datetime.now().isoformat(),
"components": {
"webhook_secret": "configured" if WEBHOOK_SECRET else "missing",
"hf_token": "configured" if HF_TOKEN else "missing",
"mcp_agent": "ready" if agent else "not_ready"
}
}
@app.get("/operations")
async def get_operations():
"""Get recent tag operations for monitoring"""
# Return last 50 operations
recent_ops = tag_operations_store[-50:] if tag_operations_store else []
return {
"total_operations": len(tag_operations_store),
"recent_operations": recent_ops
}
# async def simulate_webhook(
# repo_name: str, discussion_title: str, comment_content: str
# ) -> str:
# """Simulate webhook for testing"""
# if not all([repo_name, discussion_title, comment_content]):
# return "Please fill in all fields."
#
# mock_payload = {
# "event": {"action": "create", "scope": "discussion"},
# "comment": {
# "content": comment_content,
# "author": {"id": "test-user-id"},
# "id": "mock-comment-id",
# "hidden": False,
# },
# "discussion": {
# "title": discussion_title,
# "num": len(tag_operations_store) + 1,
# "id": "mock-discussion-id",
# "status": "open",
# "isPullRequest": False,
# },
# "repo": {
# "name": repo_name,
# "type": "model",
# "private": False,
# },
# }
#
# response = await process_webhook_comment(mock_payload)
# return f"βœ… Processed! Results: {response}"
def create_gradio_app():
"""Create Gradio interface"""
with gr.Blocks(
title="HF Tagging Bot",
# theme=gr.themes.Soft()
) as demo:
gr.Markdown("# 🏷️ HF Tagging Bot Dashboard")
gr.Markdown("*Automatically adds tags to models when mentioned in discussions*")
gr.Markdown("""
## How it works:
- Monitors HuggingFace Hub discussions
- Detects tag mentions in comments (e.g., "tag: pytorch",
"#transformers")
- Automatically adds recognized tags to the model repository
- Supports common ML tags like: pytorch, tensorflow,
text-generation, etc.
""")
with gr.Column():
sim_repo = gr.Textbox(
label="Repository",
value="burtenshaw/play-mcp-repo-bot",
placeholder="username/model-name",
)
sim_title = gr.Textbox(
label="Discussion Title",
value="Add pytorch tag",
placeholder="Discussion title",
)
sim_comment = gr.Textbox(
label="Comment",
lines=3,
value="This model should have tags: pytorch, text-generation",
placeholder="Comment mentioning tags...",
)
sim_btn = gr.Button("🏷️ Test Tag Detection")
with gr.Column():
sim_result = gr.Textbox(label="Result", lines=8)
# sim_btn.click(
# fn=simulate_webhook,
# inputs=[sim_repo, sim_title, sim_comment],
# outputs=sim_result,
# )
gr.Markdown(f"""
## Recognized Tags:
{", ".join(sorted(RECOGNIZED_TAGS))}
""")
return demo
@app.get("/")
async def welcome() -> dict:
return { "message": "Hello World"}
@app.get("/gradio2")
async def welcome_gradio2() -> dict:
return { "message": "Hello gradio2"}
# Mount Gradio app
gradio_app = create_gradio_app()
app = gr.mount_gradio_app(app, gradio_app, path="/gradio")
if __name__ == "__main__":
print("πŸš€ Starting HF Tagging Bot...")
print("πŸ“Š Dashboard: http://localhost:7860/gradio")
print("πŸ”— Webhook: http://localhost:7860/webhook")
#
# QUICK-AND-DIRTY TEST WITHOUT uvicorn
#
uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)
#
# gradio_app = create_gradio_app()
# gradio_app.launch()
# EOF