File size: 5,804 Bytes
43fcbe8
374c72e
 
cbfaa69
374c72e
 
 
 
 
 
 
 
 
 
 
 
 
 
cbfaa69
374c72e
 
 
cbfaa69
374c72e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbfaa69
374c72e
 
 
fa201eb
374c72e
 
 
c9d2e08
374c72e
 
 
 
 
 
 
 
cbfaa69
374c72e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbfaa69
374c72e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77c11ae
374c72e
 
 
 
 
 
 
 
 
 
 
8337d0b
374c72e
 
d5141b3
9e5ee0a
d7f3a60
07b3b3d
374c72e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import os
import re
import requests
import gradio as gr
from moviepy.editor import *
import edge_tts
import tempfile
import logging
from datetime import datetime
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
import nltk
import random
from transformers import pipeline
import torch
import asyncio
import nest_asyncio
from nltk.tokenize import sent_tokenize

# Setup
nltk.download('punkt', quiet=True)
nest_asyncio.apply()

logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

PEXELS_API_KEY = os.getenv("PEXELS_API_KEY")
MODEL_NAME = "DeepESP/gpt2-spanish"

VOICE_NAMES, VOICES = [], []

async def get_voices():
    voces = await edge_tts.list_voices()
    voice_names = [f"{v['Name']} ({v['Gender']}, {v['LocaleName']})" for v in voces]
    return voice_names, voces

async def get_and_set_voices():
    global VOICE_NAMES, VOICES
    try:
        VOICE_NAMES, VOICES = await get_voices()
        if not VOICES:
            raise Exception("No se encontraron voces.")
    except Exception as e:
        logger.warning(f"Fallo al cargar voces: {e}")
        VOICE_NAMES = ["Voz Predeterminada (Femenino, es-ES)"]
        VOICES = [{'ShortName': 'es-ES-ElviraNeural'}]

asyncio.get_event_loop().run_until_complete(get_and_set_voices())

def generar_guion_profesional(prompt):
    try:
        generator = pipeline(
            "text-generation",
            model=MODEL_NAME,
            device=0 if torch.cuda.is_available() else -1
        )
        response = generator(
            f"Escribe un guion profesional para un video de YouTube sobre '{prompt}'. "
            "Incluye introducci贸n, desarrollo en 3 secciones y conclusi贸n:",
            max_length=1000,
            temperature=0.7,
            top_k=50,
            top_p=0.95,
            num_return_sequences=1
        )
        guion = response[0]['generated_text']
        if len(guion.split()) < 100:
            raise ValueError("Guion demasiado breve")
        return guion
    except Exception as e:
        logger.error(f"Error generando guion: {e}")
        return f"""Introducci贸n sobre {prompt}. 
        Secci贸n 1: Or铆genes e historia.
        Secci贸n 2: Estado actual.
        Secci贸n 3: Futuro e impacto.
        Conclusi贸n reflexiva."""

def buscar_videos_avanzado(prompt, guion, num_videos=5):
    try:
        oraciones = sent_tokenize(guion)
        vectorizer = TfidfVectorizer(stop_words='spanish')
        tfidf = vectorizer.fit_transform(oraciones)
        palabras = vectorizer.get_feature_names_out()
        scores = np.asarray(tfidf.sum(axis=0)).ravel()
        top_indices = np.argsort(scores)[-5:]
        palabras_clave = [palabras[i] for i in top_indices]

        palabras_prompt = re.findall(r'\b\w{4,}\b', prompt.lower())
        todas = list(set(palabras_clave + palabras_prompt))[:5]

        headers = {"Authorization": PEXELS_API_KEY}
        response = requests.get(
            f"https://api.pexels.com/videos/search?query={'+'.join(todas)}&per_page={num_videos}",
            headers=headers,
            timeout=15
        )
        return response.json().get('videos', [])
    except Exception as e:
        logger.error(f"Error buscando videos: {e}")
        return []

async def crear_video_profesional(prompt, custom_script, voz_index, musica=None):
    voz_archivo = "voz.mp3"
    try:
        guion = custom_script if custom_script.strip() else generar_guion_profesional(prompt)
        voz_seleccionada = VOICES[voz_index]['ShortName'] if VOICES else 'es-ES-ElviraNeural'

        # Generar audio
        await edge_tts.Communicate(guion, voz_seleccionada).save(voz_archivo)
        audio = AudioFileClip(voz_archivo)

        # Obtener videos
        videos_data = buscar_videos_avanzado(prompt, guion)
        if not videos_data:
            raise Exception("No se encontraron videos")

        # Procesar videos
        clips = []
        for video in videos_data[:3]:
            video_file = next((vf for vf in video['video_files'] if vf['quality'] == 'sd'), video['video_files'][0])
            with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_video:
                response = requests.get(video_file['link'], stream=True)
                for chunk in response.iter_content(chunk_size=1024 * 1024):
                    temp_video.write(chunk)
                clip = VideoFileClip(temp_video.name).subclip(0, min(10, video['duration']))
                clips.append(clip)

        # Crear video final
        video_final = concatenate_videoclips(clips)
        video_final = video_final.set_audio(audio)

        output_path = f"video_output_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp4"
        video_final.write_videofile(output_path, fps=24, threads=2)
        return output_path

    except Exception as e:
        logger.error(f"Error cr铆tico: {e}")
        return None
    finally:
        if os.path.exists(voz_archivo):
            os.remove(voz_archivo)

# Gradio app
with gr.Blocks(title="Generador de Videos") as app:
    with gr.Row():
        with gr.Column():
            prompt = gr.Textbox(label="Tema del video")
            custom_script = gr.TextArea(label="Gui贸n personalizado (opcional)")
            voz = gr.Dropdown(VOICE_NAMES, label="Voz", value=VOICE_NAMES[0])
            btn = gr.Button("Generar Video", variant="primary")
        with gr.Column():
            output = gr.Video(label="Resultado", format="mp4")

    async def wrapper(p, cs, v):
        return await crear_video_profesional(p, cs, VOICE_NAMES.index(v))

    btn.click(
        fn=wrapper,
        inputs=[prompt, custom_script, voz],
        outputs=output
    )

if __name__ == "__main__":
    app.launch(server_name="0.0.0.0", server_port=7860)