Spaces:
Runtime error
Runtime error
File size: 33,229 Bytes
bf48cd0 711e3d2 bf48cd0 03eb4f1 bf48cd0 0504374 bf48cd0 a840c4f 711e3d2 bf48cd0 711e3d2 bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 711e3d2 bf48cd0 711e3d2 a840c4f bf48cd0 711e3d2 bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 03eb4f1 bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 711e3d2 bf48cd0 711e3d2 bf48cd0 cb92089 711e3d2 cb92089 bf48cd0 711e3d2 bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 711e3d2 bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 a840c4f a7b9459 a840c4f bf48cd0 711e3d2 a840c4f bf48cd0 1d31f3c bf48cd0 a840c4f bf48cd0 711e3d2 bf48cd0 a840c4f 711e3d2 bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 a840c4f bf48cd0 a840c4f 711e3d2 a840c4f 711e3d2 eaddca7 03eb4f1 eaddca7 ad99008 eaddca7 a840c4f eaddca7 a840c4f eaddca7 ad99008 711e3d2 eaddca7 a840c4f 711e3d2 eaddca7 a840c4f ad99008 eaddca7 a840c4f eaddca7 a840c4f ad99008 eaddca7 03eb4f1 eaddca7 a840c4f eaddca7 a840c4f eaddca7 a840c4f eaddca7 a840c4f eaddca7 711e3d2 eaddca7 711e3d2 a840c4f eaddca7 711e3d2 eaddca7 ac35a46 711e3d2 eaddca7 711e3d2 eaddca7 a840c4f 711e3d2 03eb4f1 eaddca7 a840c4f eaddca7 a840c4f eaddca7 a840c4f 03eb4f1 eaddca7 a840c4f eaddca7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 |
import os
import asyncio
import logging
import tempfile
import requests
from datetime import datetime
import edge_tts
from gtts import gTTS
import gradio as gr
import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel
from keybert import KeyBERT
from moviepy.editor import VideoFileClip, concatenate_videoclips, AudioFileClip, CompositeAudioClip, concatenate_audioclips, AudioClip
import re
import math
import shutil
import json
from collections import Counter
import time
# Configuración de logging
logging.basicConfig(
level=logging.DEBUG,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler(),
logging.FileHandler('video_generator_full.log', encoding='utf-8')
]
)
logger = logging.getLogger(__name__)
logger.info("="*80)
logger.info("INICIO DE EJECUCIÓN - GENERADOR DE VIDEOS")
logger.info("="*80)
# Diccionario de voces TTS disponibles organizadas por idioma
VOCES_DISPONIBLES = {
"Español (España)": {
"es-ES-JuanNeural": "Juan (España) - Masculino",
"es-ES-ElviraNeural": "Elvira (España) - Femenino",
"es-ES-AlvaroNeural": "Álvaro (España) - Masculino",
"es-ES-AbrilNeural": "Abril (España) - Femenino",
"es-ES-ArnauNeural": "Arnau (España) - Masculino",
"es-ES-DarioNeural": "Darío (España) - Masculino",
"es-ES-EliasNeural": "Elías (España) - Masculino",
"es-ES-EstrellaNeural": "Estrella (España) - Femenino",
"es-ES-IreneNeural": "Irene (España) - Femenino",
"es-ES-LaiaNeural": "Laia (España) - Femenino",
"es-ES-LiaNeural": "Lía (España) - Femenino",
"es-ES-NilNeural": "Nil (España) - Masculino",
"es-ES-SaulNeural": "Saúl (España) - Masculino",
"es-ES-TeoNeural": "Teo (España) - Masculino",
"es-ES-TrianaNeural": "Triana (España) - Femenino",
"es-ES-VeraNeural": "Vera (España) - Femenino"
},
"Español (México)": {
"es-MX-JorgeNeural": "Jorge (México) - Masculino",
"es-MX-DaliaNeural": "Dalia (México) - Femenino",
"es-MX-BeatrizNeural": "Beatriz (México) - Femenino",
"es-MX-CandelaNeural": "Candela (México) - Femenino",
"es-MX-CarlotaNeural": "Carlota (México) - Femenino",
"es-MX-CecilioNeural": "Cecilio (México) - Masculino",
"es-MX-GerardoNeural": "Gerardo (México) - Masculino",
"es-MX-LarissaNeural": "Larissa (México) - Femenino",
"es-MX-LibertoNeural": "Liberto (México) - Masculino",
"es-MX-LucianoNeural": "Luciano (México) - Masculino",
"es-MX-MarinaNeural": "Marina (México) - Femenino",
"es-MX-NuriaNeural": "Nuria (México) - Femenino",
"es-MX-PelayoNeural": "Pelayo (México) - Masculino",
"es-MX-RenataNeural": "Renata (México) - Femenino",
"es-MX-YagoNeural": "Yago (México) - Masculino"
},
"Español (Argentina)": {
"es-AR-TomasNeural": "Tomás (Argentina) - Masculino",
"es-AR-ElenaNeural": "Elena (Argentina) - Femenino"
},
"Español (Colombia)": {
"es-CO-GonzaloNeural": "Gonzalo (Colombia) - Masculino",
"es-CO-SalomeNeural": "Salomé (Colombia) - Femenino"
},
"Español (Chile)": {
"es-CL-LorenzoNeural": "Lorenzo (Chile) - Masculino",
"es-CL-CatalinaNeural": "Catalina (Chile) - Femenino"
},
"Español (Perú)": {
"es-PE-AlexNeural": "Alex (Perú) - Masculino",
"es-PE-CamilaNeural": "Camila (Perú) - Femenino"
},
"Español (Venezuela)": {
"es-VE-PaolaNeural": "Paola (Venezuela) - Femenino",
"es-VE-SebastianNeural": "Sebastián (Venezuela) - Masculino"
},
"Español (Estados Unidos)": {
"es-US-AlonsoNeural": "Alonso (Estados Unidos) - Masculino",
"es-US-PalomaNeural": "Paloma (Estados Unidos) - Femenino"
}
}
# Función para obtener lista plana de voces para el dropdown
def get_voice_choices():
choices = []
for region, voices in VOCES_DISPONIBLES.items():
for voice_id, voice_name in voices.items():
choices.append((f"{voice_name} ({region})", voice_id))
return choices
# Obtener las voces al inicio del script
AVAILABLE_VOICES = get_voice_choices()
DEFAULT_VOICE_ID = "es-MX-DaliaNeural" # Cambiado a una voz más estable
DEFAULT_VOICE_NAME = DEFAULT_VOICE_ID
for text, voice_id in AVAILABLE_VOICES:
if voice_id == DEFAULT_VOICE_ID:
DEFAULT_VOICE_NAME = text
break
if DEFAULT_VOICE_ID not in [v[1] for v in AVAILABLE_VOICES]:
DEFAULT_VOICE_ID = AVAILABLE_VOICES[0][1] if AVAILABLE_VOICES else "es-MX-DaliaNeural"
DEFAULT_VOICE_NAME = AVAILABLE_VOICES[0][0] if AVAILABLE_VOICES else "Dalia (México) - Femenino"
logger.info(f"Voz por defecto seleccionada (ID): {DEFAULT_VOICE_ID}")
# Clave API de Pexels
PEXELS_API_KEY = os.environ.get("PEXELS_API_KEY")
if not PEXELS_API_KEY:
logger.critical("NO SE ENCONTRÓ PEXELS_API_KEY EN VARIABLES DE ENTORNO")
# Inicialización de modelos
MODEL_NAME = "datificate/gpt2-small-spanish"
logger.info(f"Inicializando modelo GPT-2: {MODEL_NAME}")
tokenizer = None
model = None
try:
tokenizer = GPT2Tokenizer.from_pretrained(MODEL_NAME)
model = GPT2LMHeadModel.from_pretrained(MODEL_NAME).eval()
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
logger.info(f"Modelo GPT-2 cargado | Vocabulario: {len(tokenizer)} tokens")
except Exception as e:
logger.error(f"FALLA CRÍTICA al cargar GPT-2: {str(e)}", exc_info=True)
tokenizer = model = None
logger.info("Cargando modelo KeyBERT...")
kw_model = None
try:
kw_model = KeyBERT('distilbert-base-multilingual-cased')
logger.info("KeyBERT inicializado correctamente")
except Exception as e:
logger.error(f"FALLA al cargar KeyBERT: {str(e)}", exc_info=True)
kw_model = None
def buscar_videos_pexels(query, api_key, per_page=5):
if not api_key:
logger.warning("No se puede buscar en Pexels: API Key no configurada.")
return []
logger.debug(f"Buscando en Pexels: '{query}' | Resultados: {per_page}")
headers = {"Authorization": api_key}
try:
params = {
"query": query,
"per_page": per_page,
"orientation": "landscape",
"size": "medium"
}
response = requests.get(
"https://api.pexels.com/videos/search",
headers=headers,
params=params,
timeout=20
)
response.raise_for_status()
data = response.json()
videos = data.get('videos', [])
logger.info(f"Pexels: {len(videos)} videos encontrados para '{query}'")
return videos
except requests.exceptions.RequestException as e:
logger.error(f"Error de conexión Pexels para '{query}': {str(e)}")
return []
except json.JSONDecodeError:
logger.error(f"Pexels: JSON inválido recibido | Status: {response.status_code}")
return []
except Exception as e:
logger.error(f"Error inesperado Pexels para '{query}': {str(e)}")
return []
def generate_script(prompt, max_length=150):
logger.info(f"Generando guión | Prompt: '{prompt[:50]}...' | Longitud máxima: {max_length}")
if not tokenizer or not model:
logger.warning("Modelos GPT-2 no disponibles - Usando prompt original como guion.")
return prompt.strip()
instruction_phrase_start = "Escribe un guion corto, interesante y coherente sobre:"
ai_prompt = f"{instruction_phrase_start} {prompt}"
try:
inputs = tokenizer(ai_prompt, return_tensors="pt", truncation=True, max_length=512)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
inputs = {k: v.to(device) for k, v in inputs.items()}
outputs = model.generate(
**inputs,
max_length=max_length + inputs[list(inputs.keys())[0]].size(1),
do_sample=True,
top_p=0.9,
top_k=40,
temperature=0.7,
repetition_penalty=1.2,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
no_repeat_ngram_size=3
)
text = tokenizer.decode(outputs[0], skip_special_tokens=True)
prompt_in_output_idx = text.lower().find(prompt.lower())
if prompt_in_output_idx != -1:
cleaned_text = text[prompt_in_output_idx + len(prompt):].strip()
logger.debug("Texto limpiado tomando parte después del prompt original.")
else:
instruction_start_idx = text.find(instruction_phrase_start)
if instruction_start_idx != -1:
cleaned_text = text[instruction_start_idx + len(instruction_phrase_start):].strip()
logger.debug("Texto limpiado tomando parte después de la frase de instrucción base.")
else:
logger.warning("No se pudo identificar el inicio del guión generado.")
cleaned_text = text.strip()
cleaned_text = re.sub(r'<[^>]+>', '', cleaned_text).strip()
cleaned_text = cleaned_text.lstrip(':').lstrip('.').strip()
sentences = cleaned_text.split('.')
if sentences and sentences[0].strip():
final_text = sentences[0].strip() + '.'
if len(sentences) > 1 and sentences[1].strip() and len(final_text.split()) < max_length * 0.7:
final_text += " " + sentences[1].strip() + "."
final_text = final_text.replace("..", ".")
logger.info(f"Guion generado final (Truncado a 100 chars): '{final_text[:100]}...'")
return final_text.strip()
logger.info(f"Guion generado final (sin oraciones completas detectadas): '{cleaned_text[:100]}...'")
return cleaned_text.strip()
except Exception as e:
logger.error(f"Error generando guion con GPT-2: {str(e)}")
return prompt.strip()
async def text_to_speech(text, output_path, voice):
logger.info(f"Convirtiendo texto a voz | Caracteres: {len(text)} | Voz: {voice}")
if not text or not text.strip():
logger.warning("Texto vacío para TTS")
return False
try:
communicate = edge_tts.Communicate(text, voice)
await communicate.save(output_path)
if os.path.exists(output_path) and os.path.getsize(output_path) > 100:
logger.info(f"Audio guardado exitosamente con edge_tts en: {output_path}")
return True
logger.warning(f"edge_tts falló, intentando gTTS...")
except Exception as e:
logger.error(f"Error en edge_tts con voz '{voice}': {str(e)}")
try:
tts = gTTS(text=text, lang='es')
tts.save(output_path)
if os.path.exists(output_path) and os.path.getsize(output_path) > 100:
logger.info(f"Audio guardado exitosamente con gTTS en: {output_path}")
return True
logger.error(f"gTTS falló o archivo vacío en: {output_path}")
return False
except Exception as e:
logger.error(f"Error en gTTS: {str(e)}")
return False
def download_video_file(url, temp_dir):
if not url:
logger.warning("URL de video no proporcionada")
return None
try:
logger.info(f"Descargando video desde: {url[:80]}...")
os.makedirs(temp_dir, exist_ok=True)
file_name = f"video_dl_{datetime.now().strftime('%Y%m%d_%H%M%S_%f')}.mp4"
output_path = os.path.join(temp_dir, file_name)
with requests.get(url, stream=True, timeout=60) as r:
r.raise_for_status()
with open(output_path, 'wb') as f:
for chunk in r.iter_content(chunk_size=8192):
f.write(chunk)
if os.path.exists(output_path) and os.path.getsize(output_path) > 1000:
logger.info(f"Video descargado exitosamente: {output_path}")
return output_path
logger.warning(f"Descarga parece incompleta o vacía: {output_path}")
if os.path.exists(output_path):
os.remove(output_path)
return None
except requests.exceptions.RequestException as e:
logger.error(f"Error de descarga para {url[:80]}...: {str(e)}")
return None
except Exception as e:
logger.error(f"Error inesperado descargando {url[:80]}...: {str(e)}")
return None
def loop_audio_to_length(audio_clip, target_duration):
logger.debug(f"Ajustando audio | Duración actual: {audio_clip.duration:.2f}s | Objetivo: {target_duration:.2f}s")
if audio_clip is None or audio_clip.duration is None or audio_clip.duration <= 0:
logger.warning("Input audio clip is invalid")
sr = getattr(audio_clip, 'fps', 44100) if audio_clip else 44100
return AudioClip(lambda t: 0, duration=target_duration, fps=sr)
if audio_clip.duration >= target_duration:
logger.debug("Audio clip ya es suficientemente largo. Recortando.")
return audio_clip.subclip(0, target_duration)
loops = math.ceil(target_duration / audio_clip.duration)
logger.debug(f"Creando {loops} loops de audio")
try:
looped_audio = concatenate_audioclips([audio_clip] * loops)
final_looped_audio = looped_audio.subclip(0, target_duration)
looped_audio.close()
return final_looped_audio
except Exception as e:
logger.error(f"Error concatenando audio: {str(e)}")
return audio_clip.subclip(0, min(audio_clip.duration, target_duration))
def extract_visual_keywords_from_script(script_text):
logger.info("Extrayendo palabras clave del guion")
if not script_text or not script_text.strip():
logger.warning("Guion vacío")
return ["naturaleza", "ciudad", "paisaje"]
clean_text = re.sub(r'[^\w\sáéíóúñÁÉÍÓÚÑ]', '', script_text)
if kw_model:
try:
keywords1 = kw_model.extract_keywords(clean_text, keyphrase_ngram_range=(1, 1), stop_words='spanish', top_n=5)
keywords2 = kw_model.extract_keywords(clean_text, keyphrase_ngram_range=(2, 2), stop_words='spanish', top_n=3)
all_keywords = keywords1 + keywords2
all_keywords.sort(key=lambda item: item[1], reverse=True)
keywords_list = []
seen_keywords = set()
for keyword, _ in all_keywords:
formatted_keyword = keyword.lower().replace(" ", "+")
if formatted_keyword and formatted_keyword not in seen_keywords:
keywords_list.append(formatted_keyword)
seen_keywords.add(formatted_keyword)
if len(keywords_list) >= 5:
break
if keywords_list:
logger.debug(f"Palabras clave extraídas por KeyBERT: {keywords_list}")
return keywords_list
except Exception as e:
logger.warning(f"KeyBERT falló: {str(e)}. Usando método simple.")
logger.debug("Extrayendo palabras clave con método simple...")
words = clean_text.lower().split()
stop_words = {"el", "la", "los", "las", "de", "en", "y", "a", "que", "es", "un", "una", "con", "para", "del", "al", "por", "su", "sus", "se", "lo", "le", "me", "te", "nos", "os", "les", "mi", "tu"}
valid_words = [word for word in words if len(word) > 3 and word not in stop_words]
if not valid_words:
logger.warning("No se encontraron palabras clave válidas.")
return ["espiritual", "terror", "matrix", "arcontes", "galaxia"]
word_counts = Counter(valid_words)
top_keywords = [word.replace(" ", "+") for word, _ in word_counts.most_common(5)]
logger.info(f"Palabras clave finales: {top_keywords}")
return top_keywords
async def crear_video_async(prompt_type, input_text, selected_voice, musica_file=None):
logger.info("="*80)
logger.info(f"INICIANDO CREACIÓN DE VIDEO | Tipo: {prompt_type}")
logger.debug(f"Input: '{input_text[:100]}...'")
logger.info(f"Voz seleccionada: {selected_voice}")
start_time = datetime.now()
temp_dir_intermediate = tempfile.mkdtemp(prefix="video_gen_intermediate_")
logger.info(f"Directorio temporal creado: {temp_dir_intermediate}")
temp_intermediate_files = []
audio_tts_original = None
musica_audio_original = None
audio_tts = None
musica_audio = None
video_base = None
video_final = None
source_clips = []
clips_to_concatenate = []
try:
# 1. Generar o usar guion
guion = generate_script(input_text) if prompt_type == "Generar Guion con IA" else input_text.strip()
logger.info(f"Guion final ({len(guion)} chars): '{guion[:100]}...'")
if not guion.strip():
raise ValueError("El guion está vacío.")
# 2. Generar audio de voz
voz_path = os.path.join(temp_dir_intermediate, "voz.mp3")
tts_voices_to_try = [selected_voice, "es-MX-DaliaNeural"]
tts_success = False
max_chunk_length = 1000
text_chunks = [guion[i:i + max_chunk_length] for i in range(0, len(guion), max_chunk_length)]
logger.info(f"Texto dividido en {len(text_chunks)} fragmentos para TTS")
for current_voice in tts_voices_to_try:
logger.info(f"Intentando TTS con voz: {current_voice}")
try:
temp_audio_files = []
for i, chunk in enumerate(text_chunks):
temp_path = os.path.join(temp_dir_intermediate, f"voz_chunk_{i}.mp3")
tts_success = await text_to_speech(chunk, temp_path, current_voice)
if tts_success and os.path.exists(temp_path) and os.path.getsize(temp_path) > 100:
temp_audio_files.append(temp_path)
else:
logger.warning(f"TTS falló para fragmento {i} con voz: {current_voice}")
break
if len(temp_audio_files) == len(text_chunks):
audio_clips = [AudioFileClip(f) for f in temp_audio_files]
concatenated_audio = concatenate_audioclips(audio_clips)
concatenated_audio.write_audiofile(voz_path, codec='mp3')
concatenated_audio.close()
for clip in audio_clips:
clip.close()
tts_success = os.path.exists(voz_path) and os.path.getsize(voz_path) > 100
temp_intermediate_files.extend(temp_audio_files)
if tts_success:
logger.info(f"TTS exitoso con voz: {current_voice}")
break
except Exception as e:
logger.error(f"Error en TTS con voz '{current_voice}': {str(e)}")
if not tts_success or not os.path.exists(voz_path) or os.path.getsize(voz_path) <= 100:
raise ValueError(f"Error generando voz. Intentos con {tts_voices_to_try} y gTTS fallaron.")
temp_intermediate_files.append(voz_path)
audio_tts_original = AudioFileClip(voz_path)
if audio_tts_original.duration is None or audio_tts_original.duration <= 0:
raise ValueError("Audio de voz generado es inválido.")
audio_tts = audio_tts_original
audio_duration = audio_tts_original.duration
logger.info(f"Duración audio voz: {audio_duration:.2f} segundos")
if audio_duration < 1.0:
raise ValueError("Audio de voz demasiado corto.")
# 3. Extraer palabras clave
keywords = extract_visual_keywords_from_script(guion)
if not keywords:
keywords = ["video", "background"]
logger.info(f"Palabras clave: {keywords}")
# 4. Buscar y descargar videos
videos_data = []
total_desired_videos = 10
per_page_per_keyword = max(1, total_desired_videos // len(keywords))
for keyword in keywords:
if len(videos_data) >= total_desired_videos:
break
videos = buscar_videos_pexels(keyword, PEXELS_API_KEY, per_page=per_page_per_keyword)
videos_data.extend(videos)
if len(videos_data) < total_desired_videos / 2:
generic_keywords = ["mystery", "alien", "ufo", "conspiracy", "paranormal"]
for keyword in generic_keywords:
if len(videos_data) >= total_desired_videos:
break
videos = buscar_videos_pexels(keyword, PEXELS_API_KEY, per_page=2)
videos_data.extend(videos)
if not videos_data:
raise ValueError("No se encontraron videos en Pexels.")
video_paths = []
for video in videos_data:
if 'video_files' not in video or not video['video_files']:
continue
best_quality = max(video['video_files'], key=lambda x: x.get('width', 0) * x.get('height', 0), default=None)
if best_quality and 'link' in best_quality:
path = download_video_file(best_quality['link'], temp_dir_intermediate)
if path:
video_paths.append(path)
temp_intermediate_files.append(path)
if not video_paths:
raise ValueError("No se descargaron videos utilizables.")
# 5. Procesar y concatenar clips de video
current_duration = 0
min_clip_duration = 0.5
max_clip_segment = 10.0
for i, path in enumerate(video_paths):
if current_duration >= audio_duration + max_clip_segment:
break
try:
clip = VideoFileClip(path)
source_clips.append(clip)
if clip.duration is None or clip.duration <= 0:
continue
remaining_needed = audio_duration - current_duration
segment_duration = min(clip.duration, max_clip_segment, remaining_needed + min_clip_duration)
if segment_duration >= min_clip_duration:
sub = clip.subclip(0, segment_duration)
clips_to_concatenate.append(sub)
current_duration += sub.duration
except Exception as e:
logger.warning(f"Error procesando video {path}: {str(e)}")
if not clips_to_concatenate:
raise ValueError("No hay segmentos de video válidos.")
video_base = concatenate_videoclips(clips_to_concatenate, method="chain")
if video_base.duration is None or video_base.duration <= 0:
raise ValueError("Video base inválido.")
# Ajustar duración del video
if video_base.duration < audio_duration:
num_full_repeats = int(audio_duration // video_base.duration)
remaining_duration = audio_duration % video_base.duration
repeated_clips_list = [video_base] * num_full_repeats
if remaining_duration > 0:
remaining_clip = video_base.subclip(0, remaining_duration)
repeated_clips_list.append(remaining_clip)
video_base = concatenate_videoclips(repeated_clips_list, method="chain")
elif video_base.duration > audio_duration:
video_base = video_base.subclip(0, audio_duration)
# 6. Manejar música de fondo
final_audio = audio_tts
if musica_file:
try:
music_path = os.path.join(temp_dir_intermediate, "musica_bg.mp3")
shutil.copyfile(musica_file.name if hasattr(musica_file, 'name') else musica_file, music_path)
temp_intermediate_files.append(music_path)
musica_audio_original = AudioFileClip(music_path)
if musica_audio_original.duration > 0:
musica_audio = loop_audio_to_length(musica_audio_original, video_base.duration)
final_audio = CompositeAudioClip([
musica_audio.volumex(0.2),
audio_tts.volumex(1.0)
])
except Exception as e:
logger.warning(f"Error procesando música: {str(e)}")
final_audio = audio_tts
if abs(final_audio.duration - video_base.duration) > 0.2:
final_audio = final_audio.subclip(0, video_base.duration)
# 7. Combinar audio y video
video_final = video_base.set_audio(final_audio)
output_filename = f"video_{int(datetime.now().timestamp())}.mp4"
output_path = os.path.join(temp_dir_intermediate, output_filename)
persistent_dir = "/data"
os.makedirs(persistent_dir, exist_ok=True)
persistent_path = os.path.join(persistent_dir, output_filename)
video_final.write_videofile(
output_path,
fps=24,
threads=2,
codec="libx264",
audio_codec="aac",
preset="medium",
ffmpeg_params=['-vf', 'scale=1920:1080:force_original_aspect_ratio=decrease,pad=1920:1080:-1:-1:color=black', '-crf', '23'],
logger='bar'
)
shutil.move(output_path, persistent_path)
download_url = f"https://gnosticdev-invideo-basic.hf.space/file={persistent_path}"
logger.info(f"Video guardado en: {persistent_path}")
logger.info(f"URL de descarga: {download_url}")
total_time = (datetime.now() - start_time).total_seconds()
logger.info(f"Video generado en {total_time:.2f}s")
return persistent_path, download_url
except ValueError as ve:
logger.error(f"Error controlado: {str(ve)}")
raise
except Exception as e:
logger.critical(f"Error crítico: {str(e)}")
raise
finally:
for clip in source_clips + clips_to_concatenate:
try:
clip.close()
except:
pass
if audio_tts_original:
try:
audio_tts_original.close()
except:
pass
if musica_audio:
try:
musica_audio.close()
except:
pass
if musica_audio_original:
try:
musica_audio_original.close()
except:
pass
if video_base:
try:
video_base.close()
except:
pass
if video_final:
try:
video_final.close()
except:
pass
for path in temp_intermediate_files:
if os.path.isfile(path) and path != persistent_path:
try:
os.remove(path)
except:
logger.warning(f"No se pudo eliminar {path}")
try:
if os.path.exists(temp_dir_intermediate):
shutil.rmtree(temp_dir_intermediate)
except:
logger.warning(f"No se pudo eliminar directorio temporal {temp_dir_intermediate}")
async def run_app_async(prompt_type, prompt_ia, prompt_manual, musica_file, selected_voice):
logger.info("="*80)
logger.info("SOLICITUD RECIBIDA EN INTERFAZ")
input_text = prompt_ia if prompt_type == "Generar Guion con IA" else prompt_manual
output_video = None
output_file = None
status_msg = gr.update(value="⏳ Procesando... Esto puede tomar hasta 1 hora.")
if not input_text or not input_text.strip():
logger.warning("Texto de entrada vacío.")
return None, None, gr.update(value="⚠️ Ingresa texto para el guion o tema.")
voice_ids_disponibles = [v[1] for v in AVAILABLE_VOICES]
if selected_voice not in voice_ids_disponibles:
logger.warning(f"Voz inválida: '{selected_voice}'. Usando voz por defecto: {DEFAULT_VOICE_ID}")
selected_voice = DEFAULT_VOICE_ID
try:
logger.info("Iniciando generación de video...")
video_path, download_url = await crear_video_async(prompt_type, input_text, selected_voice, musica_file)
if video_path and os.path.exists(video_path):
output_video = video_path
output_file = video_path
status_msg = gr.update(value=f"✅ Video generado exitosamente. Descarga: {download_url}")
logger.info(f"Retornando video_path: {video_path}, URL: {download_url}")
else:
status_msg = gr.update(value="❌ Error: Falló la generación del video.")
logger.error("No se generó video_path válido.")
except ValueError as ve:
logger.warning(f"Error de validación: {str(ve)}")
status_msg = gr.update(value=f"⚠️ Error: {str(ve)}")
except Exception as e:
logger.critical(f"Error crítico: {str(e)}")
status_msg = gr.update(value=f"❌ Error inesperado: {str(e)}")
finally:
logger.info("Finalizando run_app_async")
return output_video, gr.File(value=output_file, label="Descargar Video"), status_msg
def run_app(prompt_type, prompt_ia, prompt_manual, musica_file, selected_voice):
return asyncio.run(run_app_async(prompt_type, prompt_ia, prompt_manual, musica_file, selected_voice))
# Interfaz de Gradio
with gr.Blocks(title="Generador de Videos con IA", theme=gr.themes.Soft()) as app:
gr.Markdown("# 🎬 Generador Automático de Videos con IA")
gr.Markdown("Genera videos cortos a partir de un tema o guion, usando imágenes de archivo de Pexels y voz generada.")
with gr.Row():
with gr.Column():
prompt_type = gr.Radio(
["Generar Guion con IA", "Usar Mi Guion"],
label="Método de Entrada",
value="Generar Guion con IA"
)
with gr.Column(visible=True) as ia_guion_column:
prompt_ia = gr.Textbox(
label="Tema para IA",
lines=2,
placeholder="Ej: Un paisaje natural con montañas y ríos al amanecer...",
max_lines=4
)
with gr.Column(visible=False) as manual_guion_column:
prompt_manual = gr.Textbox(
label="Tu Guion Completo",
lines=5,
placeholder="Ej: En este video exploraremos los misterios del océano...",
max_lines=10
)
musica_input = gr.Audio(
label="Música de fondo (opcional)",
type="filepath",
interactive=True
)
voice_dropdown = gr.Dropdown(
label="Seleccionar Voz para Guion",
choices=AVAILABLE_VOICES,
value=DEFAULT_VOICE_ID,
interactive=True
)
generate_btn = gr.Button("✨ Generar Video", variant="primary")
with gr.Column():
video_output = gr.Video(
label="Previsualización del Video Generado",
interactive=False,
height=400
)
file_output = gr.File(
label="Descargar Archivo de Video",
interactive=False,
visible=False
)
status_output = gr.Textbox(
label="Estado",
interactive=False,
placeholder="Esperando acción...",
value="Esperando entrada..."
)
prompt_type.change(
fn=lambda x: (gr.update(visible=x == "Generar Guion con IA"), gr.update(visible=x == "Usar Mi Guion")),
inputs=prompt_type,
outputs=[ia_guion_column, manual_guion_column]
)
generate_btn.click(
fn=lambda: (None, None, gr.update(value="⏳ Procesando... Esto puede tomar hasta 1 hora.")),
outputs=[video_output, file_output, status_output]
).then(
fn=run_app,
inputs=[prompt_type, prompt_ia, prompt_manual, musica_input, voice_dropdown],
outputs=[video_output, file_output, status_output],
queue=True
).then(
fn=lambda video_path, file_output, status_msg: gr.update(visible=file_output.value is not None),
inputs=[video_output, file_output, status_output],
outputs=[file_output]
)
gr.Markdown("### Instrucciones:")
gr.Markdown("""
1. Configura la variable de entorno `PEXELS_API_KEY`.
2. Selecciona el tipo de entrada: "Generar Guion con IA" o "Usar Mi Guion".
3. Sube música (opcional).
4. Selecciona la voz.
5. Haz clic en "✨ Generar Video".
6. Revisa el estado. Si el video se genera, estará disponible en /data.
7. Consulta `video_generator_full.log` para detalles.
""")
if __name__ == "__main__":
logger.info("Verificando dependencias...")
try:
from moviepy.editor import ColorClip
temp_clip = ColorClip((100,100), color=(255,0,0), duration=0.1)
temp_clip.close()
logger.info("MoviePy y FFmpeg accesibles.")
except Exception as e:
logger.critical(f"Fallo en dependencias: {e}")
raise
os.environ['GRADIO_SERVER_TIMEOUT'] = '3600'
logger.info("Iniciando aplicación Gradio...")
try:
app.launch(server_name="0.0.0.0", server_port=7860, share=False)
except Exception as e:
logger.critical(f"No se pudo iniciar la app: {str(e)}")
raise |