Spaces:
Running
Running
File size: 8,920 Bytes
43fcbe8 fa201eb c9d2e08 720c3d5 c9d2e08 dd712f9 720c3d5 dd712f9 43fcbe8 c9d2e08 720c3d5 fa201eb dd712f9 720c3d5 d7f3a60 720c3d5 fa201eb 720c3d5 d7f3a60 720c3d5 d7f3a60 720c3d5 dd712f9 720c3d5 c9d2e08 fa201eb 720c3d5 d7f3a60 720c3d5 fa201eb 720c3d5 fa201eb 720c3d5 fa201eb 720c3d5 fa201eb 720c3d5 d7f3a60 720c3d5 fa201eb 720c3d5 fa201eb 43fcbe8 720c3d5 fa201eb 720c3d5 d7f3a60 720c3d5 d7f3a60 720c3d5 fa201eb 720c3d5 fa201eb 720c3d5 fa201eb 720c3d5 fa201eb 720c3d5 fa201eb 720c3d5 d7f3a60 fa201eb 720c3d5 fa201eb 720c3d5 fa201eb d7f3a60 fa201eb d7f3a60 fa201eb c9d2e08 720c3d5 d7f3a60 720c3d5 d7f3a60 720c3d5 fa201eb 720c3d5 d7f3a60 720c3d5 d7f3a60 720c3d5 fa201eb 720c3d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import os
import re
import random
import time
import logging
from typing import Optional, List
from datetime import datetime
from pathlib import Path
# Configuraci贸n inicial para HF Spaces
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["GRADIO_ANALYTICS_ENABLED"] = "false"
os.environ["HF_HUB_DISABLE_PROGRESS_BARS"] = "1"
# Configuraci贸n de logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
try:
import requests
from moviepy.editor import VideoFileClip, concatenate_videoclips, AudioFileClip, CompositeAudioClip
from moviepy.audio.fx.all import audio_loop
import edge_tts
import gradio as gr
import numpy as np
from transformers import pipeline
import backoff
except ImportError as e:
logger.error(f"Error importing dependencies: {e}")
raise
# Constantes configurables
MAX_VIDEOS = 3 # Reducir para evitar rate limiting
VIDEO_SEGMENT_DURATION = 5 # Duraci贸n de cada segmento en segundos
MAX_RETRIES = 3 # M谩ximo de reintentos para descargas
REQUEST_TIMEOUT = 15 # Timeout para requests
# Configuraci贸n de modelos
MODEL_NAME = "facebook/mbart-large-50"
PEXELS_API_KEY = os.getenv("PEXELS_API_KEY", "")
@backoff.on_exception(backoff.expo,
(requests.exceptions.RequestException,
requests.exceptions.HTTPError),
max_tries=MAX_RETRIES,
max_time=30)
def safe_download(url: str, timeout: int = REQUEST_TIMEOUT) -> Optional[str]:
"""Descarga segura con reintentos y manejo de rate limiting"""
try:
response = requests.get(url, stream=True, timeout=timeout)
response.raise_for_status()
filename = f"temp_{random.randint(1000,9999)}.mp4"
with open(filename, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
return filename
except requests.exceptions.HTTPError as e:
if e.response.status_code == 429:
retry_after = int(e.response.headers.get('Retry-After', 5))
logger.warning(f"Rate limited. Waiting {retry_after} seconds...")
time.sleep(retry_after)
logger.error(f"Download failed: {str(e)}")
return None
except Exception as e:
logger.error(f"Unexpected download error: {str(e)}")
return None
def download_video_segment(url: str, duration: float, output_path: str) -> bool:
"""Descarga y procesa un segmento de video"""
temp_path = None
try:
temp_path = safe_download(url)
if not temp_path:
return False
with VideoFileClip(temp_path) as clip:
if clip.duration < 1:
logger.error("Video demasiado corto")
return False
end_time = min(duration, clip.duration - 0.1)
subclip = clip.subclip(0, end_time)
# Configuraci贸n optimizada para HF Spaces
subclip.write_videofile(
output_path,
codec="libx264",
audio_codec="aac",
threads=2,
preset='ultrafast',
verbose=False,
ffmpeg_params=[
'-max_muxing_queue_size', '1024',
'-movflags', '+faststart'
]
)
return True
except Exception as e:
logger.error(f"Video processing error: {str(e)}")
return False
finally:
if temp_path and os.path.exists(temp_path):
os.remove(temp_path)
def fetch_pexels_videos(query: str) -> List[str]:
"""Busca videos en Pexels con manejo de errores"""
if not PEXELS_API_KEY:
logger.error("PEXELS_API_KEY no configurada")
return []
headers = {"Authorization": PEXELS_API_KEY}
url = f"https://api.pexels.com/videos/search?query={query}&per_page={MAX_VIDEOS}"
try:
response = requests.get(url, headers=headers, timeout=REQUEST_TIMEOUT)
response.raise_for_status()
videos = []
for video in response.json().get("videos", [])[:MAX_VIDEOS]:
video_files = [vf for vf in video.get("video_files", [])
if vf.get("width", 0) >= 720] # Calidad m铆nima
if video_files:
best_file = max(video_files, key=lambda x: x.get("width", 0))
videos.append(best_file["link"])
return videos
except Exception as e:
logger.error(f"Error fetching Pexels videos: {str(e)}")
return []
def generate_script(prompt: str) -> str:
"""Genera un script usando IA local con fallback"""
try:
generator = pipeline("text-generation", model=MODEL_NAME)
result = generator(
f"Genera un guion breve sobre {prompt} en espa帽ol con {MAX_VIDEOS} puntos:",
max_length=200,
num_return_sequences=1
)[0]['generated_text']
return result
except Exception as e:
logger.error(f"Error generating script: {str(e)}")
return f"1. Punto uno sobre {prompt}\n2. Punto dos\n3. Punto tres"
async def generate_voice(text: str, output_file: str = "voice.mp3") -> bool:
"""Genera narraci贸n de voz con manejo de errores"""
try:
communicate = edge_tts.Communicate(text, voice="es-MX-DaliaNeural")
await communicate.save(output_file)
return True
except Exception as e:
logger.error(f"Voice generation failed: {str(e)}")
return False
def run_async(coro):
"""Ejecuta corrutinas as铆ncronas desde c贸digo s铆ncrono"""
import asyncio
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
return loop.run_until_complete(coro)
finally:
loop.close()
def create_video(prompt: str) -> Optional[str]:
"""Funci贸n principal para crear el video"""
try:
# 1. Generar contenido
script = generate_script(prompt)
logger.info(f"Script generado: {script[:100]}...")
# 2. Buscar videos
video_urls = fetch_pexels_videos(prompt)
if not video_urls:
logger.error("No se encontraron videos")
return None
# 3. Generar voz
voice_file = "voice.mp3"
if not run_async(generate_voice(script, voice_file)):
logger.error("No se pudo generar voz")
return None
# 4. Procesar videos
output_dir = "output"
os.makedirs(output_dir, exist_ok=True)
output_path = os.path.join(output_dir, f"video_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp4")
clips = []
segment_duration = VIDEO_SEGMENT_DURATION
for i, url in enumerate(video_urls):
clip_path = f"segment_{i}.mp4"
if download_video_segment(url, segment_duration, clip_path):
clips.append(VideoFileClip(clip_path))
if not clips:
logger.error("No se pudieron procesar los videos")
return None
# 5. Ensamblar video final
final_video = concatenate_videoclips(clips, method="compose")
audio_clip = AudioFileClip(voice_file)
final_video = final_video.set_audio(audio_clip)
final_video.write_videofile(
output_path,
codec="libx264",
audio_codec="aac",
threads=2,
preset='ultrafast',
verbose=False
)
return output_path
except Exception as e:
logger.error(f"Error creating video: {str(e)}")
return None
finally:
# Limpieza
for clip in clips:
clip.close()
if os.path.exists(voice_file):
os.remove(voice_file)
for i in range(len(video_urls)):
if os.path.exists(f"segment_{i}.mp4"):
os.remove(f"segment_{i}.mp4")
# Interfaz Gradio optimizada
with gr.Blocks(title="Generador de Videos HF", theme=gr.themes.Soft()) as app:
gr.Markdown("# 馃帴 Generador Autom谩tico de Videos")
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(
label="Tema del video",
placeholder="Ej: Paisajes naturales de Chile",
max_lines=2
)
generate_btn = gr.Button("Generar Video", variant="primary")
with gr.Column():
output_video = gr.Video(label="Resultado", interactive=False)
generate_btn.click(
fn=create_video,
inputs=prompt_input,
outputs=output_video
)
# Para Hugging Face Spaces
if __name__ == "__main__":
app.launch(server_name="0.0.0.0", server_port=7860) |