Spaces:
Running
Running
| import os | |
| import re | |
| import requests | |
| import gradio as gr | |
| from moviepy.editor import * | |
| import edge_tts | |
| import tempfile | |
| import logging | |
| from datetime import datetime | |
| import numpy as np | |
| from sklearn.feature_extraction.text import TfidfVectorizer | |
| import nltk | |
| from nltk.tokenize import sent_tokenize | |
| import random | |
| from transformers import pipeline | |
| import torch | |
| # Configuración inicial | |
| nltk.download('punkt') | |
| logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') | |
| logger = logging.getLogger(__name__) | |
| # Configuración de modelos | |
| PEXELS_API_KEY = os.getenv("PEXELS_API_KEY") | |
| MODEL_NAME = "DeepESP/gpt2-spanish" # Modelo en español más ligero | |
| # Lista de voces disponibles | |
| VOICES = asyncio.run(edge_tts.list_voices()) | |
| VOICE_NAMES = [f"{v['Name']} ({v['Gender']}, {v['LocaleName']})" for v in VOICES] | |
| def generar_guion_profesional(prompt): | |
| """Genera guiones detallados con sistema de 3 niveles""" | |
| try: | |
| # 1. Intento con modelo principal | |
| generator = pipeline( | |
| "text-generation", | |
| model=MODEL_NAME, | |
| device=0 if torch.cuda.is_available() else -1 | |
| ) | |
| response = generator( | |
| f"Escribe un guion profesional para un video de YouTube sobre '{prompt}'. " | |
| "La estructura debe incluir:\n" | |
| "1. Introducción atractiva\n" | |
| "2. Tres secciones detalladas con subtítulos\n" | |
| "3. Conclusión impactante\n" | |
| "Usa un estilo natural para narración:", | |
| max_length=1000, | |
| temperature=0.7, | |
| top_k=50, | |
| top_p=0.95, | |
| num_return_sequences=1 | |
| ) | |
| guion = response[0]['generated_text'] | |
| # 2. Verificar calidad del guion | |
| if len(guion.split()) < 100: # Si es muy corto | |
| raise ValueError("Guion demasiado breve") | |
| return guion | |
| except Exception as e: | |
| logger.error(f"Error generando guion: {str(e)}") | |
| # 3. Respaldos inteligentes | |
| temas = { | |
| "historia": ["orígenes", "eventos clave", "impacto actual"], | |
| "tecnología": ["funcionamiento", "aplicaciones", "futuro"], | |
| "ciencia": ["teorías", "evidencia", "implicaciones"], | |
| "misterio": ["enigma", "teorías", "explicaciones"], | |
| "arte": ["orígenes", "características", "influencia"] | |
| } | |
| # Detectar categoría del tema | |
| categoria = "general" | |
| for key in temas: | |
| if key in prompt.lower(): | |
| categoria = key | |
| break | |
| puntos_clave = temas.get(categoria, ["aspectos importantes", "datos relevantes", "conclusiones"]) | |
| # Generar guion de respaldo con estructura profesional | |
| return f""" | |
| ¡Hola a todos! Bienvenidos a este análisis completo sobre {prompt}. | |
| En este video exploraremos a fondo este fascinante tema a través de tres secciones clave. | |
| SECCIÓN 1: {puntos_clave[0].capitalize()} | |
| Comenzaremos analizando los {puntos_clave[0]} fundamentales. | |
| Esto nos permitirá entender mejor la base de {prompt}. | |
| SECCIÓN 2: {puntos_clave[1].capitalize()} | |
| En esta parte, examinaremos los {puntos_clave[1]} más relevantes | |
| y cómo se relacionan con el tema principal. | |
| SECCIÓN 3: {puntos_clave[2].capitalize()} | |
| Finalmente, exploraremos las {puntos_clave[2]} | |
| y qué significan para el futuro de este campo. | |
| ¿Listos para profundizar? ¡Empecemos! | |
| """ | |
| def buscar_videos_avanzado(prompt, guion, num_videos=5): | |
| """Búsqueda inteligente de videos usando análisis de contenido""" | |
| try: | |
| # Dividir el guion en oraciones | |
| oraciones = sent_tokenize(guion) | |
| # Extraer palabras clave con TF-IDF | |
| vectorizer = TfidfVectorizer(stop_words=['el', 'la', 'los', 'las', 'de', 'en', 'y', 'que']) | |
| tfidf = vectorizer.fit_transform(oraciones) | |
| palabras = vectorizer.get_feature_names_out() | |
| scores = np.asarray(tfidf.sum(axis=0)).ravel() | |
| indices_importantes = np.argsort(scores)[-5:] | |
| palabras_clave = [palabras[i] for i in indices_importantes] | |
| # Mezclar palabras clave del prompt y del guion | |
| palabras_prompt = re.findall(r'\b\w{4,}\b', prompt.lower()) | |
| todas_palabras = list(set(palabras_clave + palabras_prompt))[:5] | |
| # Buscar en Pexels | |
| headers = {"Authorization": PEXELS_API_KEY} | |
| response = requests.get( | |
| f"https://api.pexels.com/videos/search?query={'+'.join(todas_palabras)}&per_page={num_videos}", | |
| headers=headers, | |
| timeout=15 | |
| ) | |
| videos = response.json().get('videos', []) | |
| logger.info(f"Palabras clave usadas: {todas_palabras}") | |
| # Seleccionar videos de mejor calidad | |
| videos_ordenados = sorted( | |
| videos, | |
| key=lambda x: x.get('width', 0) * x.get('height', 0), | |
| reverse=True | |
| ) | |
| return videos_ordenados[:num_videos] | |
| except Exception as e: | |
| logger.error(f"Error en búsqueda de videos: {str(e)}") | |
| # Búsqueda simple de respaldo | |
| response = requests.get( | |
| f"https://api.pexels.com/videos/search?query={prompt}&per_page={num_videos}", | |
| headers={"Authorization": PEXELS_API_KEY}, | |
| timeout=10 | |
| ) | |
| return response.json().get('videos', [])[:num_videos] | |
| def crear_video_profesional(prompt, custom_script, voz_index, musica=None): | |
| try: | |
| # 1. Generar o usar guion | |
| guion = custom_script if custom_script else generar_guion_profesional(prompt) | |
| logger.info(f"Guion generado ({len(guion.split())} palabras)") | |
| # 2. Seleccionar voz | |
| voz_seleccionada = VOICES[voz_index]['ShortName'] | |
| # 3. Generar voz | |
| voz_archivo = "voz.mp3" | |
| asyncio.run(edge_tts.Communicate(guion, voz_seleccionada).save(voz_archivo)) | |
| audio = AudioFileClip(voz_archivo) | |
| duracion_total = audio.duration | |
| # 4. Buscar videos relevantes | |
| videos_data = buscar_videos_avanzado(prompt, guion) | |
| if not videos_data: | |
| raise Exception("No se encontraron videos relevantes") | |
| # 5. Descargar y preparar videos | |
| clips = [] | |
| for video in videos_data: | |
| # Seleccionar la mejor calidad de video | |
| video_files = sorted( | |
| video['video_files'], | |
| key=lambda x: x.get('width', 0) * x.get('height', 0), | |
| reverse=True | |
| ) | |
| video_url = video_files[0]['link'] | |
| # Descargar video | |
| response = requests.get(video_url, stream=True) | |
| temp_video = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') | |
| for chunk in response.iter_content(chunk_size=1024*1024): | |
| temp_video.write(chunk) | |
| temp_video.close() | |
| # Crear clip | |
| clip = VideoFileClip(temp_video.name) | |
| clips.append(clip) | |
| # 6. Calcular duración por clip | |
| duracion_por_clip = duracion_total / len(clips) | |
| # 7. Procesar clips de video | |
| clips_procesados = [] | |
| for clip in clips: | |
| # Si el clip es más corto que la duración asignada, hacer loop | |
| if clip.duration < duracion_por_clip: | |
| clip = clip.loop(duration=duracion_por_clip) | |
| # Si es más largo, recortar | |
| else: | |
| clip = clip.subclip(0, duracion_por_clip) | |
| clips_procesados.append(clip) | |
| # 8. Combinar videos | |
| video_final = concatenate_videoclips(clips_procesados) | |
| # 9. Procesar música | |
| if musica: | |
| musica_clip = AudioFileClip(musica.name) | |
| if musica_clip.duration < duracion_total: | |
| musica_clip = musica_clip.loop(duration=duracion_total) | |
| else: | |
| musica_clip = musica_clip.subclip(0, duracion_total) | |
| audio = CompositeAudioClip([audio, musica_clip.volumex(0.25)]) | |
| video_final = video_final.set_audio(audio) | |
| # 10. Exportar video | |
| output_path = f"video_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp4" | |
| video_final.write_videofile( | |
| output_path, | |
| codec="libx264", | |
| audio_codec="aac", | |
| threads=2, | |
| preset='fast', | |
| fps=24 | |
| ) | |
| return output_path | |
| except Exception as e: | |
| logger.error(f"ERROR: {str(e)}") | |
| return None | |
| finally: | |
| # Limpieza de archivos temporales | |
| if os.path.exists(voz_archivo): | |
| os.remove(voz_archivo) | |
| # Interfaz profesional | |
| with gr.Blocks(theme=gr.themes.Soft(), title="Generador de Videos Profesional") as app: | |
| gr.Markdown("# 🎬 GENERADOR DE VIDEOS CON IA") | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| gr.Markdown("### Configuración del Contenido") | |
| prompt = gr.Textbox(label="Tema principal", placeholder="Ej: 'Los misterios de la antigua Grecia'") | |
| custom_script = gr.TextArea( | |
| label="Guion personalizado (opcional)", | |
| placeholder="Pega aquí tu propio guion completo...", | |
| lines=8 | |
| ) | |
| voz = gr.Dropdown( | |
| label="Selecciona una voz", | |
| choices=VOICE_NAMES, | |
| value=VOICE_NAMES[0], | |
| type="index" | |
| ) | |
| musica = gr.File( | |
| label="Música de fondo (opcional)", | |
| file_types=["audio"] | |
| ) | |
| btn = gr.Button("🚀 Generar Video", variant="primary", size="lg") | |
| with gr.Column(scale=2): | |
| output = gr.Video( | |
| label="Video Resultante", | |
| format="mp4", | |
| interactive=False | |
| ) | |
| gr.Examples( | |
| examples=[ | |
| ["Los secretos de las pirámides egipcias", "", 5, None], | |
| ["La inteligencia artificial en medicina", "", 3, None], | |
| ["Lugares abandonados más misteriosos", "", 8, None] | |
| ], | |
| inputs=[prompt, custom_script, voz, musica], | |
| label="Ejemplos: Haz clic en uno y luego en Generar" | |
| ) | |
| btn.click( | |
| fn=crear_video_profesional, | |
| inputs=[prompt, custom_script, voz, musica], | |
| outputs=output | |
| ) | |
| if __name__ == "__main__": | |
| app.launch(server_name="0.0.0.0", server_port=7860) |