Spaces:
Runtime error
Runtime error
import os | |
import asyncio | |
import logging | |
import tempfile | |
import requests | |
from datetime import datetime | |
import edge_tts | |
from gtts import gTTS | |
import gradio as gr | |
import torch | |
from transformers import GPT2Tokenizer, GPT2LMHeadModel | |
from keybert import KeyBERT | |
from moviepy.editor import VideoFileClip, concatenate_videoclips, AudioFileClip, CompositeAudioClip, concatenate_audioclips, AudioClip | |
import re | |
import math | |
import shutil | |
import json | |
from collections import Counter | |
import time | |
# Configuración de logging | |
logging.basicConfig( | |
level=logging.DEBUG, | |
format='%(asctime)s - %(levelname)s - %(message)s', | |
handlers=[ | |
logging.StreamHandler(), | |
logging.FileHandler('video_generator_full.log', encoding='utf-8') | |
] | |
) | |
logger = logging.getLogger(__name__) | |
logger.info("="*80) | |
logger.info("INICIO DE EJECUCIÓN - GENERADOR DE VIDEOS") | |
logger.info("="*80) | |
# Diccionario de voces TTS disponibles organizadas por idioma | |
VOCES_DISPONIBLES = { | |
"Español (España)": { | |
"es-ES-JuanNeural": "Juan (España) - Masculino", | |
"es-ES-ElviraNeural": "Elvira (España) - Femenino", | |
"es-ES-AlvaroNeural": "Álvaro (España) - Masculino", | |
"es-ES-AbrilNeural": "Abril (España) - Femenino", | |
"es-ES-ArnauNeural": "Arnau (España) - Masculino", | |
"es-ES-DarioNeural": "Darío (España) - Masculino", | |
"es-ES-EliasNeural": "Elías (España) - Masculino", | |
"es-ES-EstrellaNeural": "Estrella (España) - Femenino", | |
"es-ES-IreneNeural": "Irene (España) - Femenino", | |
"es-ES-LaiaNeural": "Laia (España) - Femenino", | |
"es-ES-LiaNeural": "Lía (España) - Femenino", | |
"es-ES-NilNeural": "Nil (España) - Masculino", | |
"es-ES-SaulNeural": "Saúl (España) - Masculino", | |
"es-ES-TeoNeural": "Teo (España) - Masculino", | |
"es-ES-TrianaNeural": "Triana (España) - Femenino", | |
"es-ES-VeraNeural": "Vera (España) - Femenino" | |
}, | |
"Español (México)": { | |
"es-MX-JorgeNeural": "Jorge (México) - Masculino", | |
"es-MX-DaliaNeural": "Dalia (México) - Femenino", | |
"es-MX-BeatrizNeural": "Beatriz (México) - Femenino", | |
"es-MX-CandelaNeural": "Candela (México) - Femenino", | |
"es-MX-CarlotaNeural": "Carlota (México) - Femenino", | |
"es-MX-CecilioNeural": "Cecilio (México) - Masculino", | |
"es-MX-GerardoNeural": "Gerardo (México) - Masculino", | |
"es-MX-LarissaNeural": "Larissa (México) - Femenino", | |
"es-MX-LibertoNeural": "Liberto (México) - Masculino", | |
"es-MX-LucianoNeural": "Luciano (México) - Masculino", | |
"es-MX-MarinaNeural": "Marina (México) - Femenino", | |
"es-MX-NuriaNeural": "Nuria (México) - Femenino", | |
"es-MX-PelayoNeural": "Pelayo (México) - Masculino", | |
"es-MX-RenataNeural": "Renata (México) - Femenino", | |
"es-MX-YagoNeural": "Yago (México) - Masculino" | |
}, | |
"Español (Argentina)": { | |
"es-AR-TomasNeural": "Tomás (Argentina) - Masculino", | |
"es-AR-ElenaNeural": "Elena (Argentina) - Femenino" | |
}, | |
"Español (Colombia)": { | |
"es-CO-GonzaloNeural": "Gonzalo (Colombia) - Masculino", | |
"es-CO-SalomeNeural": "Salomé (Colombia) - Femenino" | |
}, | |
"Español (Chile)": { | |
"es-CL-LorenzoNeural": "Lorenzo (Chile) - Masculino", | |
"es-CL-CatalinaNeural": "Catalina (Chile) - Femenino" | |
}, | |
"Español (Perú)": { | |
"es-PE-AlexNeural": "Alex (Perú) - Masculino", | |
"es-PE-CamilaNeural": "Camila (Perú) - Femenino" | |
}, | |
"Español (Venezuela)": { | |
"es-VE-PaolaNeural": "Paola (Venezuela) - Femenino", | |
"es-VE-SebastianNeural": "Sebastián (Venezuela) - Masculino" | |
}, | |
"Español (Estados Unidos)": { | |
"es-US-AlonsoNeural": "Alonso (Estados Unidos) - Masculino", | |
"es-US-PalomaNeural": "Paloma (Estados Unidos) - Femenino" | |
} | |
} | |
# Función para obtener lista plana de voces para el dropdown | |
def get_voice_choices(): | |
choices = [] | |
for region, voices in VOCES_DISPONIBLES.items(): | |
for voice_id, voice_name in voices.items(): | |
choices.append((f"{voice_name} ({region})", voice_id)) | |
return choices | |
# Obtener las voces al inicio del script | |
AVAILABLE_VOICES = get_voice_choices() | |
DEFAULT_VOICE_ID = "es-MX-DaliaNeural" # Cambiado a una voz más estable | |
DEFAULT_VOICE_NAME = DEFAULT_VOICE_ID | |
for text, voice_id in AVAILABLE_VOICES: | |
if voice_id == DEFAULT_VOICE_ID: | |
DEFAULT_VOICE_NAME = text | |
break | |
if DEFAULT_VOICE_ID not in [v[1] for v in AVAILABLE_VOICES]: | |
DEFAULT_VOICE_ID = AVAILABLE_VOICES[0][1] if AVAILABLE_VOICES else "es-MX-DaliaNeural" | |
DEFAULT_VOICE_NAME = AVAILABLE_VOICES[0][0] if AVAILABLE_VOICES else "Dalia (México) - Femenino" | |
logger.info(f"Voz por defecto seleccionada (ID): {DEFAULT_VOICE_ID}") | |
# Clave API de Pexels | |
PEXELS_API_KEY = os.environ.get("PEXELS_API_KEY") | |
if not PEXELS_API_KEY: | |
logger.critical("NO SE ENCONTRÓ PEXELS_API_KEY EN VARIABLES DE ENTORNO") | |
# Inicialización de modelos | |
MODEL_NAME = "datificate/gpt2-small-spanish" | |
logger.info(f"Inicializando modelo GPT-2: {MODEL_NAME}") | |
tokenizer = None | |
model = None | |
try: | |
tokenizer = GPT2Tokenizer.from_pretrained(MODEL_NAME) | |
model = GPT2LMHeadModel.from_pretrained(MODEL_NAME).eval() | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
logger.info(f"Modelo GPT-2 cargado | Vocabulario: {len(tokenizer)} tokens") | |
except Exception as e: | |
logger.error(f"FALLA CRÍTICA al cargar GPT-2: {str(e)}", exc_info=True) | |
tokenizer = model = None | |
logger.info("Cargando modelo KeyBERT...") | |
kw_model = None | |
try: | |
kw_model = KeyBERT('distilbert-base-multilingual-cased') | |
logger.info("KeyBERT inicializado correctamente") | |
except Exception as e: | |
logger.error(f"FALLA al cargar KeyBERT: {str(e)}", exc_info=True) | |
kw_model = None | |
def buscar_videos_pexels(query, api_key, per_page=5): | |
if not api_key: | |
logger.warning("No se puede buscar en Pexels: API Key no configurada.") | |
return [] | |
logger.debug(f"Buscando en Pexels: '{query}' | Resultados: {per_page}") | |
headers = {"Authorization": api_key} | |
try: | |
params = { | |
"query": query, | |
"per_page": per_page, | |
"orientation": "landscape", | |
"size": "medium" | |
} | |
response = requests.get( | |
"https://api.pexels.com/videos/search", | |
headers=headers, | |
params=params, | |
timeout=20 | |
) | |
response.raise_for_status() | |
data = response.json() | |
videos = data.get('videos', []) | |
logger.info(f"Pexels: {len(videos)} videos encontrados para '{query}'") | |
return videos | |
except requests.exceptions.RequestException as e: | |
logger.error(f"Error de conexión Pexels para '{query}': {str(e)}") | |
return [] | |
except json.JSONDecodeError: | |
logger.error(f"Pexels: JSON inválido recibido | Status: {response.status_code}") | |
return [] | |
except Exception as e: | |
logger.error(f"Error inesperado Pexels para '{query}': {str(e)}") | |
return [] | |
def generate_script(prompt, max_length=150): | |
logger.info(f"Generando guión | Prompt: '{prompt[:50]}...' | Longitud máxima: {max_length}") | |
if not tokenizer or not model: | |
logger.warning("Modelos GPT-2 no disponibles - Usando prompt original como guion.") | |
return prompt.strip() | |
instruction_phrase_start = "Escribe un guion corto, interesante y coherente sobre:" | |
ai_prompt = f"{instruction_phrase_start} {prompt}" | |
try: | |
inputs = tokenizer(ai_prompt, return_tensors="pt", truncation=True, max_length=512) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
inputs = {k: v.to(device) for k, v in inputs.items()} | |
outputs = model.generate( | |
**inputs, | |
max_length=max_length + inputs[list(inputs.keys())[0]].size(1), | |
do_sample=True, | |
top_p=0.9, | |
top_k=40, | |
temperature=0.7, | |
repetition_penalty=1.2, | |
pad_token_id=tokenizer.pad_token_id, | |
eos_token_id=tokenizer.eos_token_id, | |
no_repeat_ngram_size=3 | |
) | |
text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
prompt_in_output_idx = text.lower().find(prompt.lower()) | |
if prompt_in_output_idx != -1: | |
cleaned_text = text[prompt_in_output_idx + len(prompt):].strip() | |
logger.debug("Texto limpiado tomando parte después del prompt original.") | |
else: | |
instruction_start_idx = text.find(instruction_phrase_start) | |
if instruction_start_idx != -1: | |
cleaned_text = text[instruction_start_idx + len(instruction_phrase_start):].strip() | |
logger.debug("Texto limpiado tomando parte después de la frase de instrucción base.") | |
else: | |
logger.warning("No se pudo identificar el inicio del guión generado.") | |
cleaned_text = text.strip() | |
cleaned_text = re.sub(r'<[^>]+>', '', cleaned_text).strip() | |
cleaned_text = cleaned_text.lstrip(':').lstrip('.').strip() | |
sentences = cleaned_text.split('.') | |
if sentences and sentences[0].strip(): | |
final_text = sentences[0].strip() + '.' | |
if len(sentences) > 1 and sentences[1].strip() and len(final_text.split()) < max_length * 0.7: | |
final_text += " " + sentences[1].strip() + "." | |
final_text = final_text.replace("..", ".") | |
logger.info(f"Guion generado final (Truncado a 100 chars): '{final_text[:100]}...'") | |
return final_text.strip() | |
logger.info(f"Guion generado final (sin oraciones completas detectadas): '{cleaned_text[:100]}...'") | |
return cleaned_text.strip() | |
except Exception as e: | |
logger.error(f"Error generando guion con GPT-2: {str(e)}") | |
return prompt.strip() | |
async def text_to_speech(text, output_path, voice): | |
logger.info(f"Convirtiendo texto a voz | Caracteres: {len(text)} | Voz: {voice}") | |
if not text or not text.strip(): | |
logger.warning("Texto vacío para TTS") | |
return False | |
try: | |
communicate = edge_tts.Communicate(text, voice) | |
await communicate.save(output_path) | |
if os.path.exists(output_path) and os.path.getsize(output_path) > 100: | |
logger.info(f"Audio guardado exitosamente con edge_tts en: {output_path}") | |
return True | |
logger.warning(f"edge_tts falló, intentando gTTS...") | |
except Exception as e: | |
logger.error(f"Error en edge_tts con voz '{voice}': {str(e)}") | |
try: | |
tts = gTTS(text=text, lang='es') | |
tts.save(output_path) | |
if os.path.exists(output_path) and os.path.getsize(output_path) > 100: | |
logger.info(f"Audio guardado exitosamente con gTTS en: {output_path}") | |
return True | |
logger.error(f"gTTS falló o archivo vacío en: {output_path}") | |
return False | |
except Exception as e: | |
logger.error(f"Error en gTTS: {str(e)}") | |
return False | |
def download_video_file(url, temp_dir): | |
if not url: | |
logger.warning("URL de video no proporcionada") | |
return None | |
try: | |
logger.info(f"Descargando video desde: {url[:80]}...") | |
os.makedirs(temp_dir, exist_ok=True) | |
file_name = f"video_dl_{datetime.now().strftime('%Y%m%d_%H%M%S_%f')}.mp4" | |
output_path = os.path.join(temp_dir, file_name) | |
with requests.get(url, stream=True, timeout=60) as r: | |
r.raise_for_status() | |
with open(output_path, 'wb') as f: | |
for chunk in r.iter_content(chunk_size=8192): | |
f.write(chunk) | |
if os.path.exists(output_path) and os.path.getsize(output_path) > 1000: | |
logger.info(f"Video descargado exitosamente: {output_path}") | |
return output_path | |
logger.warning(f"Descarga parece incompleta o vacía: {output_path}") | |
if os.path.exists(output_path): | |
os.remove(output_path) | |
return None | |
except requests.exceptions.RequestException as e: | |
logger.error(f"Error de descarga para {url[:80]}...: {str(e)}") | |
return None | |
except Exception as e: | |
logger.error(f"Error inesperado descargando {url[:80]}...: {str(e)}") | |
return None | |
def loop_audio_to_length(audio_clip, target_duration): | |
logger.debug(f"Ajustando audio | Duración actual: {audio_clip.duration:.2f}s | Objetivo: {target_duration:.2f}s") | |
if audio_clip is None or audio_clip.duration is None or audio_clip.duration <= 0: | |
logger.warning("Input audio clip is invalid") | |
sr = getattr(audio_clip, 'fps', 44100) if audio_clip else 44100 | |
return AudioClip(lambda t: 0, duration=target_duration, fps=sr) | |
if audio_clip.duration >= target_duration: | |
logger.debug("Audio clip ya es suficientemente largo. Recortando.") | |
return audio_clip.subclip(0, target_duration) | |
loops = math.ceil(target_duration / audio_clip.duration) | |
logger.debug(f"Creando {loops} loops de audio") | |
try: | |
looped_audio = concatenate_audioclips([audio_clip] * loops) | |
final_looped_audio = looped_audio.subclip(0, target_duration) | |
looped_audio.close() | |
return final_looped_audio | |
except Exception as e: | |
logger.error(f"Error concatenando audio: {str(e)}") | |
return audio_clip.subclip(0, min(audio_clip.duration, target_duration)) | |
def extract_visual_keywords_from_script(script_text): | |
logger.info("Extrayendo palabras clave del guion") | |
if not script_text or not script_text.strip(): | |
logger.warning("Guion vacío") | |
return ["naturaleza", "ciudad", "paisaje"] | |
clean_text = re.sub(r'[^\w\sáéíóúñÁÉÍÓÚÑ]', '', script_text) | |
if kw_model: | |
try: | |
keywords1 = kw_model.extract_keywords(clean_text, keyphrase_ngram_range=(1, 1), stop_words='spanish', top_n=5) | |
keywords2 = kw_model.extract_keywords(clean_text, keyphrase_ngram_range=(2, 2), stop_words='spanish', top_n=3) | |
all_keywords = keywords1 + keywords2 | |
all_keywords.sort(key=lambda item: item[1], reverse=True) | |
keywords_list = [] | |
seen_keywords = set() | |
for keyword, _ in all_keywords: | |
formatted_keyword = keyword.lower().replace(" ", "+") | |
if formatted_keyword and formatted_keyword not in seen_keywords: | |
keywords_list.append(formatted_keyword) | |
seen_keywords.add(formatted_keyword) | |
if len(keywords_list) >= 5: | |
break | |
if keywords_list: | |
logger.debug(f"Palabras clave extraídas por KeyBERT: {keywords_list}") | |
return keywords_list | |
except Exception as e: | |
logger.warning(f"KeyBERT falló: {str(e)}. Usando método simple.") | |
logger.debug("Extrayendo palabras clave con método simple...") | |
words = clean_text.lower().split() | |
stop_words = {"el", "la", "los", "las", "de", "en", "y", "a", "que", "es", "un", "una", "con", "para", "del", "al", "por", "su", "sus", "se", "lo", "le", "me", "te", "nos", "os", "les", "mi", "tu"} | |
valid_words = [word for word in words if len(word) > 3 and word not in stop_words] | |
if not valid_words: | |
logger.warning("No se encontraron palabras clave válidas.") | |
return ["espiritual", "terror", "matrix", "arcontes", "galaxia"] | |
word_counts = Counter(valid_words) | |
top_keywords = [word.replace(" ", "+") for word, _ in word_counts.most_common(5)] | |
logger.info(f"Palabras clave finales: {top_keywords}") | |
return top_keywords | |
async def crear_video_async(prompt_type, input_text, selected_voice, musica_file=None): | |
logger.info("="*80) | |
logger.info(f"INICIANDO CREACIÓN DE VIDEO | Tipo: {prompt_type}") | |
logger.debug(f"Input: '{input_text[:100]}...'") | |
logger.info(f"Voz seleccionada: {selected_voice}") | |
start_time = datetime.now() | |
temp_dir_intermediate = tempfile.mkdtemp(prefix="video_gen_intermediate_") | |
logger.info(f"Directorio temporal creado: {temp_dir_intermediate}") | |
temp_intermediate_files = [] | |
audio_tts_original = None | |
musica_audio_original = None | |
audio_tts = None | |
musica_audio = None | |
video_base = None | |
video_final = None | |
source_clips = [] | |
clips_to_concatenate = [] | |
try: | |
# 1. Generar o usar guion | |
guion = generate_script(input_text) if prompt_type == "Generar Guion con IA" else input_text.strip() | |
logger.info(f"Guion final ({len(guion)} chars): '{guion[:100]}...'") | |
if not guion.strip(): | |
raise ValueError("El guion está vacío.") | |
# 2. Generar audio de voz | |
voz_path = os.path.join(temp_dir_intermediate, "voz.mp3") | |
tts_voices_to_try = [selected_voice, "es-MX-DaliaNeural"] | |
tts_success = False | |
max_chunk_length = 1000 | |
text_chunks = [guion[i:i + max_chunk_length] for i in range(0, len(guion), max_chunk_length)] | |
logger.info(f"Texto dividido en {len(text_chunks)} fragmentos para TTS") | |
for current_voice in tts_voices_to_try: | |
logger.info(f"Intentando TTS con voz: {current_voice}") | |
try: | |
temp_audio_files = [] | |
for i, chunk in enumerate(text_chunks): | |
temp_path = os.path.join(temp_dir_intermediate, f"voz_chunk_{i}.mp3") | |
tts_success = await text_to_speech(chunk, temp_path, current_voice) | |
if tts_success and os.path.exists(temp_path) and os.path.getsize(temp_path) > 100: | |
temp_audio_files.append(temp_path) | |
else: | |
logger.warning(f"TTS falló para fragmento {i} con voz: {current_voice}") | |
break | |
if len(temp_audio_files) == len(text_chunks): | |
audio_clips = [AudioFileClip(f) for f in temp_audio_files] | |
concatenated_audio = concatenate_audioclips(audio_clips) | |
concatenated_audio.write_audiofile(voz_path, codec='mp3') | |
concatenated_audio.close() | |
for clip in audio_clips: | |
clip.close() | |
tts_success = os.path.exists(voz_path) and os.path.getsize(voz_path) > 100 | |
temp_intermediate_files.extend(temp_audio_files) | |
if tts_success: | |
logger.info(f"TTS exitoso con voz: {current_voice}") | |
break | |
except Exception as e: | |
logger.error(f"Error en TTS con voz '{current_voice}': {str(e)}") | |
if not tts_success or not os.path.exists(voz_path) or os.path.getsize(voz_path) <= 100: | |
raise ValueError(f"Error generando voz. Intentos con {tts_voices_to_try} y gTTS fallaron.") | |
temp_intermediate_files.append(voz_path) | |
audio_tts_original = AudioFileClip(voz_path) | |
if audio_tts_original.duration is None or audio_tts_original.duration <= 0: | |
raise ValueError("Audio de voz generado es inválido.") | |
audio_tts = audio_tts_original | |
audio_duration = audio_tts_original.duration | |
logger.info(f"Duración audio voz: {audio_duration:.2f} segundos") | |
if audio_duration < 1.0: | |
raise ValueError("Audio de voz demasiado corto.") | |
# 3. Extraer palabras clave | |
keywords = extract_visual_keywords_from_script(guion) | |
if not keywords: | |
keywords = ["video", "background"] | |
logger.info(f"Palabras clave: {keywords}") | |
# 4. Buscar y descargar videos | |
videos_data = [] | |
total_desired_videos = 10 | |
per_page_per_keyword = max(1, total_desired_videos // len(keywords)) | |
for keyword in keywords: | |
if len(videos_data) >= total_desired_videos: | |
break | |
videos = buscar_videos_pexels(keyword, PEXELS_API_KEY, per_page=per_page_per_keyword) | |
videos_data.extend(videos) | |
if len(videos_data) < total_desired_videos / 2: | |
generic_keywords = ["mystery", "alien", "ufo", "conspiracy", "paranormal"] | |
for keyword in generic_keywords: | |
if len(videos_data) >= total_desired_videos: | |
break | |
videos = buscar_videos_pexels(keyword, PEXELS_API_KEY, per_page=2) | |
videos_data.extend(videos) | |
if not videos_data: | |
raise ValueError("No se encontraron videos en Pexels.") | |
video_paths = [] | |
for video in videos_data: | |
if 'video_files' not in video or not video['video_files']: | |
continue | |
best_quality = max(video['video_files'], key=lambda x: x.get('width', 0) * x.get('height', 0), default=None) | |
if best_quality and 'link' in best_quality: | |
path = download_video_file(best_quality['link'], temp_dir_intermediate) | |
if path: | |
video_paths.append(path) | |
temp_intermediate_files.append(path) | |
if not video_paths: | |
raise ValueError("No se descargaron videos utilizables.") | |
# 5. Procesar y concatenar clips de video | |
current_duration = 0 | |
min_clip_duration = 0.5 | |
max_clip_segment = 10.0 | |
for i, path in enumerate(video_paths): | |
if current_duration >= audio_duration + max_clip_segment: | |
break | |
try: | |
clip = VideoFileClip(path) | |
source_clips.append(clip) | |
if clip.duration is None or clip.duration <= 0: | |
continue | |
remaining_needed = audio_duration - current_duration | |
segment_duration = min(clip.duration, max_clip_segment, remaining_needed + min_clip_duration) | |
if segment_duration >= min_clip_duration: | |
sub = clip.subclip(0, segment_duration) | |
clips_to_concatenate.append(sub) | |
current_duration += sub.duration | |
except Exception as e: | |
logger.warning(f"Error procesando video {path}: {str(e)}") | |
if not clips_to_concatenate: | |
raise ValueError("No hay segmentos de video válidos.") | |
video_base = concatenate_videoclips(clips_to_concatenate, method="chain") | |
if video_base.duration is None or video_base.duration <= 0: | |
raise ValueError("Video base inválido.") | |
# Ajustar duración del video | |
if video_base.duration < audio_duration: | |
num_full_repeats = int(audio_duration // video_base.duration) | |
remaining_duration = audio_duration % video_base.duration | |
repeated_clips_list = [video_base] * num_full_repeats | |
if remaining_duration > 0: | |
remaining_clip = video_base.subclip(0, remaining_duration) | |
repeated_clips_list.append(remaining_clip) | |
video_base = concatenate_videoclips(repeated_clips_list, method="chain") | |
elif video_base.duration > audio_duration: | |
video_base = video_base.subclip(0, audio_duration) | |
# 6. Manejar música de fondo | |
final_audio = audio_tts | |
if musica_file: | |
try: | |
music_path = os.path.join(temp_dir_intermediate, "musica_bg.mp3") | |
shutil.copyfile(musica_file.name if hasattr(musica_file, 'name') else musica_file, music_path) | |
temp_intermediate_files.append(music_path) | |
musica_audio_original = AudioFileClip(music_path) | |
if musica_audio_original.duration > 0: | |
musica_audio = loop_audio_to_length(musica_audio_original, video_base.duration) | |
final_audio = CompositeAudioClip([ | |
musica_audio.volumex(0.2), | |
audio_tts.volumex(1.0) | |
]) | |
except Exception as e: | |
logger.warning(f"Error procesando música: {str(e)}") | |
final_audio = audio_tts | |
if abs(final_audio.duration - video_base.duration) > 0.2: | |
final_audio = final_audio.subclip(0, video_base.duration) | |
# 7. Combinar audio y video | |
video_final = video_base.set_audio(final_audio) | |
output_filename = f"video_{int(datetime.now().timestamp())}.mp4" | |
output_path = os.path.join(temp_dir_intermediate, output_filename) | |
persistent_dir = "/data" | |
os.makedirs(persistent_dir, exist_ok=True) | |
persistent_path = os.path.join(persistent_dir, output_filename) | |
video_final.write_videofile( | |
output_path, | |
fps=24, | |
threads=2, | |
codec="libx264", | |
audio_codec="aac", | |
preset="medium", | |
ffmpeg_params=['-vf', 'scale=1920:1080:force_original_aspect_ratio=decrease,pad=1920:1080:-1:-1:color=black', '-crf', '23'], | |
logger='bar' | |
) | |
shutil.move(output_path, persistent_path) | |
download_url = f"https://gnosticdev-invideo-basic.hf.space/file={persistent_path}" | |
logger.info(f"Video guardado en: {persistent_path}") | |
logger.info(f"URL de descarga: {download_url}") | |
total_time = (datetime.now() - start_time).total_seconds() | |
logger.info(f"Video generado en {total_time:.2f}s") | |
return persistent_path, download_url | |
except ValueError as ve: | |
logger.error(f"Error controlado: {str(ve)}") | |
raise | |
except Exception as e: | |
logger.critical(f"Error crítico: {str(e)}") | |
raise | |
finally: | |
for clip in source_clips + clips_to_concatenate: | |
try: | |
clip.close() | |
except: | |
pass | |
if audio_tts_original: | |
try: | |
audio_tts_original.close() | |
except: | |
pass | |
if musica_audio: | |
try: | |
musica_audio.close() | |
except: | |
pass | |
if musica_audio_original: | |
try: | |
musica_audio_original.close() | |
except: | |
pass | |
if video_base: | |
try: | |
video_base.close() | |
except: | |
pass | |
if video_final: | |
try: | |
video_final.close() | |
except: | |
pass | |
for path in temp_intermediate_files: | |
if os.path.isfile(path) and path != persistent_path: | |
try: | |
os.remove(path) | |
except: | |
logger.warning(f"No se pudo eliminar {path}") | |
try: | |
if os.path.exists(temp_dir_intermediate): | |
shutil.rmtree(temp_dir_intermediate) | |
except: | |
logger.warning(f"No se pudo eliminar directorio temporal {temp_dir_intermediate}") | |
async def run_app_async(prompt_type, prompt_ia, prompt_manual, musica_file, selected_voice): | |
logger.info("="*80) | |
logger.info("SOLICITUD RECIBIDA EN INTERFAZ") | |
input_text = prompt_ia if prompt_type == "Generar Guion con IA" else prompt_manual | |
output_video = None | |
output_file = None | |
status_msg = gr.update(value="⏳ Procesando... Esto puede tomar hasta 1 hora.") | |
if not input_text or not input_text.strip(): | |
logger.warning("Texto de entrada vacío.") | |
return None, None, gr.update(value="⚠️ Ingresa texto para el guion o tema.") | |
voice_ids_disponibles = [v[1] for v in AVAILABLE_VOICES] | |
if selected_voice not in voice_ids_disponibles: | |
logger.warning(f"Voz inválida: '{selected_voice}'. Usando voz por defecto: {DEFAULT_VOICE_ID}") | |
selected_voice = DEFAULT_VOICE_ID | |
try: | |
logger.info("Iniciando generación de video...") | |
video_path, download_url = await crear_video_async(prompt_type, input_text, selected_voice, musica_file) | |
if video_path and os.path.exists(video_path): | |
output_video = video_path | |
output_file = video_path | |
status_msg = gr.update(value=f"✅ Video generado exitosamente. Descarga: {download_url}") | |
logger.info(f"Retornando video_path: {video_path}, URL: {download_url}") | |
else: | |
status_msg = gr.update(value="❌ Error: Falló la generación del video.") | |
logger.error("No se generó video_path válido.") | |
except ValueError as ve: | |
logger.warning(f"Error de validación: {str(ve)}") | |
status_msg = gr.update(value=f"⚠️ Error: {str(ve)}") | |
except Exception as e: | |
logger.critical(f"Error crítico: {str(e)}") | |
status_msg = gr.update(value=f"❌ Error inesperado: {str(e)}") | |
finally: | |
logger.info("Finalizando run_app_async") | |
return output_video, gr.File(value=output_file, label="Descargar Video"), status_msg | |
def run_app(prompt_type, prompt_ia, prompt_manual, musica_file, selected_voice): | |
return asyncio.run(run_app_async(prompt_type, prompt_ia, prompt_manual, musica_file, selected_voice)) | |
# Interfaz de Gradio | |
with gr.Blocks(title="Generador de Videos con IA", theme=gr.themes.Soft()) as app: | |
gr.Markdown("# 🎬 Generador Automático de Videos con IA") | |
gr.Markdown("Genera videos cortos a partir de un tema o guion, usando imágenes de archivo de Pexels y voz generada.") | |
with gr.Row(): | |
with gr.Column(): | |
prompt_type = gr.Radio( | |
["Generar Guion con IA", "Usar Mi Guion"], | |
label="Método de Entrada", | |
value="Generar Guion con IA" | |
) | |
with gr.Column(visible=True) as ia_guion_column: | |
prompt_ia = gr.Textbox( | |
label="Tema para IA", | |
lines=2, | |
placeholder="Ej: Un paisaje natural con montañas y ríos al amanecer...", | |
max_lines=4 | |
) | |
with gr.Column(visible=False) as manual_guion_column: | |
prompt_manual = gr.Textbox( | |
label="Tu Guion Completo", | |
lines=5, | |
placeholder="Ej: En este video exploraremos los misterios del océano...", | |
max_lines=10 | |
) | |
musica_input = gr.Audio( | |
label="Música de fondo (opcional)", | |
type="filepath", | |
interactive=True | |
) | |
voice_dropdown = gr.Dropdown( | |
label="Seleccionar Voz para Guion", | |
choices=AVAILABLE_VOICES, | |
value=DEFAULT_VOICE_ID, | |
interactive=True | |
) | |
generate_btn = gr.Button("✨ Generar Video", variant="primary") | |
with gr.Column(): | |
video_output = gr.Video( | |
label="Previsualización del Video Generado", | |
interactive=False, | |
height=400 | |
) | |
file_output = gr.File( | |
label="Descargar Archivo de Video", | |
interactive=False, | |
visible=False | |
) | |
status_output = gr.Textbox( | |
label="Estado", | |
interactive=False, | |
placeholder="Esperando acción...", | |
value="Esperando entrada..." | |
) | |
prompt_type.change( | |
fn=lambda x: (gr.update(visible=x == "Generar Guion con IA"), gr.update(visible=x == "Usar Mi Guion")), | |
inputs=prompt_type, | |
outputs=[ia_guion_column, manual_guion_column] | |
) | |
generate_btn.click( | |
fn=lambda: (None, None, gr.update(value="⏳ Procesando... Esto puede tomar hasta 1 hora.")), | |
outputs=[video_output, file_output, status_output] | |
).then( | |
fn=run_app, | |
inputs=[prompt_type, prompt_ia, prompt_manual, musica_input, voice_dropdown], | |
outputs=[video_output, file_output, status_output], | |
queue=True | |
).then( | |
fn=lambda video_path, file_output, status_msg: gr.update(visible=file_output.value is not None), | |
inputs=[video_output, file_output, status_output], | |
outputs=[file_output] | |
) | |
gr.Markdown("### Instrucciones:") | |
gr.Markdown(""" | |
1. Configura la variable de entorno `PEXELS_API_KEY`. | |
2. Selecciona el tipo de entrada: "Generar Guion con IA" o "Usar Mi Guion". | |
3. Sube música (opcional). | |
4. Selecciona la voz. | |
5. Haz clic en "✨ Generar Video". | |
6. Revisa el estado. Si el video se genera, estará disponible en /data. | |
7. Consulta `video_generator_full.log` para detalles. | |
""") | |
if __name__ == "__main__": | |
logger.info("Verificando dependencias...") | |
try: | |
from moviepy.editor import ColorClip | |
temp_clip = ColorClip((100,100), color=(255,0,0), duration=0.1) | |
temp_clip.close() | |
logger.info("MoviePy y FFmpeg accesibles.") | |
except Exception as e: | |
logger.critical(f"Fallo en dependencias: {e}") | |
raise | |
os.environ['GRADIO_SERVER_TIMEOUT'] = '3600' | |
logger.info("Iniciando aplicación Gradio...") | |
try: | |
app.launch(server_name="0.0.0.0", server_port=7860, share=False) | |
except Exception as e: | |
logger.critical(f"No se pudo iniciar la app: {str(e)}") | |
raise |